Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép nhân và phép chia các đa thức

Nhằm giúp bồi dưỡng năng lực học tập chương trình Toán lớp 8 chương 1, THCS. giới thiệu đến các em học sinh tài liệu chuyên đề phép nhân và phép chia các đa thức. Tài liệu gồm 44 trang bao gồm kiến thức cơ bản, hướng dẫn mẫu và bài tập tự luận các chủ đề: 1. Nhân đơn thức với đa thức : Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích của chúng lại với nhau. 2. Nhân đa thức với đa thức : Muốn nhân một đathức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. 3. Những hằng đẳng thức đáng nhớ : Bình phương của một tổng, Bình phương của một hiệu, Hiệu hai bình phương. 4. Những hằng đẳng thức đáng nhớ : Lập phương của một tổng, Lập phương của một hiệu. 5. Những hằng đẳng thức đáng nhớ : Tổng hai lập phương, Hiệu hai lập phương. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung . + Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức. + Phương pháp đặt nhân tử chung là một phương pháp để phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử có chung nhân tử. [ads] 7. Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức : Ta có thể sử dụng các hằng đẳng thức đáng nhớ theo chiều biến đổi từ một vế là một đa thức sang vế kia là một tích của các nhân tử hoặc lũy thừa của một đơn thức đơn giản hơn. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử : Khi sử dụng phương pháp nhóm hạng tử để phân tích đa thức thành nhân tử, ta cần nhận xét đặc điểm của các hạng tử, nhóm các hạng tử một cách thích hợp nhằm làm xuất hiện dạng hằng đẳng thức hoặc xuất hiện nhân tử chung của các nhóm. Phân tích đa thức thành nhân tử (nâng cao). 9. Phân tích đa thức thành nhân tử phối hợp nhiều phương pháp : Nhiều khi phải phối hợp nhiều phương pháp để phân tích đa thức thành nhân tử. Thông thường, ta xem xét đến phương pháp nhân tử chung trước tiên, tiếp đó ta xét xem có thể sử dụng được các hằng đẳng thức đã học hay không? Có thể nhóm hoặc tách hạng tử, thêm và bớt cùng một hạng tử hay không? 10. Chia đơn thức cho đơn thức . Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A. Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau: + Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Nhân các kết quả vừa tìm được với nhau. 11. Chia đa thức cho đơn thức : Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B) ta chia mỗi hạng tử của A cho B rồi cộng các kết quả lại với nhau. 12. Chia đa thức một biến đã sắp xếp . Phép chia hai đa thức đã sắp xếp được thực hiện tương tự như phép chia hai số tự nhiên: + Chia hạng tử bậc cao nhất của đa thức bị chia cho hạng tử bậc cao nhất của đa thức chia, được hạng tử cao nhất của thương. + Chia hạng tử bậc cao nhất của dư thứ nhất cho hạng tử bậc cao nhất của đa thức chia, được hạng tử thứ hai của thương. + Quá trình trên diễn ra liên tục đến khi được dư cuối cùng bằng 0 (phép chia hết) hoặc dư cuối cùng khác 0 có bậc thấp hơn bậc của đa thức chia (phép chia có dư). Đề kiểm tra chương I – Đại số 8.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khái niệm hai tam giác đồng dạng
Nội dung Chuyên đề khái niệm hai tam giác đồng dạng Bản PDF - Nội dung bài viết Chuyên đề khái niệm hai tam giác đồng dạngKiến thức cơ bảnDạng bài tập cơ bản Chuyên đề khái niệm hai tam giác đồng dạng Chuyên đề này bao gồm 11 trang tài liệu, tóm tắt các khái niệm quan trọng về hai tam giác đồng dạng, phân loại dạng bài tập và hướng dẫn cách giải. Được tuyển chọn từ cơ bản đến nâng cao, các bài tập trong tài liệu giúp học sinh hiểu rõ về khái niệm hai tam giác đồng dạng. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản Tài liệu tập trung vào những kiến thức cơ bản như cách vẽ tam giác đồng dạng với một tam giác cho trước và cách chứng minh hai tam giác đồng dạng. Học sinh sẽ được hướng dẫn xác định tỉ số đồng dạng và kẻ đường thẳng song song với một cạnh của tam giác. Dạng bài tập cơ bản Các dạng bài tập cơ bản trong tài liệu bao gồm việc vẽ tam giác đồng dạng, chứng minh hai tam giác đồng dạng thông qua việc sử dụng định nghĩa hoặc định lí. Học sinh cũng sẽ được hướng dẫn tính độ dài cạnh và tỉ số đồng dạng thông qua các tam giác đồng dạng. Trong tài liệu, cũng có dạng bài tập chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng, giúp học sinh hiểu rõ hơn về khái niệm này.
Chuyên đề tính chất đường phân giác của tam giác
Nội dung Chuyên đề tính chất đường phân giác của tam giác Bản PDF - Nội dung bài viết Chuyên đề tính chất đường phân giác của tam giác Chuyên đề tính chất đường phân giác của tam giác Chuyên đề này bao gồm 11 trang tài liệu, cung cấp kiến thức cần thiết về trọng tâm, phân dạng và cách giải các dạng toán liên quan đến tính chất đường phân giác của tam giác. Tài liệu này đã được tuyển chọn kỹ lưỡng từ cơ bản đến nâng cao, phục vụ cho học sinh trong quá trình học tập chương trình Hình học lớp 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản: Định lý: Đường phân giác của một góc trong tam giác chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn đó. Chú ý: Định lý cũng đúng khi áp dụng cho đường phân giác góc ngoài của tam giác. Các định lý này cũng có thể được áp dụng theo hướng đối nghịch. Bài tập minh họa: Các bài tập được chia thành hai dạng cơ bản và nâng cao: Dạng bài cơ bản: Dạng 1: Tính độ dài của đoạn thẳng thông qua việc áp dụng tính chất đường phân giác, lập tỷ lệ thức và sử dụng đại số hóa hình học. Dạng 2: Tính tỉ số độ dài và diện tích giữa hai tam giác thông qua việc lập tỷ lệ thức và sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả được thu được từ công thức tính diện tích tam giác. Dạng bài nâng cao: Đây là phần bài tập mang tính chất phức tạp hơn, yêu cầu học sinh có kỹ năng và hiểu biết sâu hơn về tính chất đường phân giác của tam giác. Thông qua việc học chuyên đề này, học sinh sẽ nắm vững kiến thức cơ bản và có thể áp dụng vào các bài tập thực tế, giúp họ tự tin hơn khi giải các bài toán liên quan đến tam giác và đường phân giác.
Chuyên đề định lí đảo và hệ quả của định lí Ta-lét
Nội dung Chuyên đề định lí đảo và hệ quả của định lí Ta-lét Bản PDF Chuyên Đề Định Lí Đảo Và Hệ Quả Của Định Lí Ta-lét Chuyên đề này tập trung vào việc giải quyết các bài toán liên quan đến định lí đảo và hệ quả của định lí Ta-lét trong hình học. Với 14 trang tài liệu, nó cung cấp lý thuyết cơ bản cần thiết, hướng dẫn phân dạng và giải các dạng toán, từ cơ bản đến nâng cao. Đầu tiên, ta cần nhớ rõ định lí Ta-lét đảo, nói rằng nếu một đường thẳng cắt hai cạnh của một tam giác và tạo ra các đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó sẽ song song với cạnh còn lại của tam giác. Hệ quả của định lí này là nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại, ta sẽ có một tam giác mới với ba cạnh tỉ lệ với tam giác ban đầu. Trong phần bài tập minh họa, chúng ta sẽ đi qua các dạng toán cơ bản và nâng cao. Ví dụ như tính độ dài đoạn thẳng bằng cách lập tỉ lệ thức và giải phương trình, chia đoạn thẳng thành các phần bằng nhau bằng cách sử dụng hệ quả của định lí Ta-lét. Ngoài ra, chúng ta cũng sẽ chứng minh hệ thức hình học và chứng minh hai đường thẳng song song bằng cách áp dụng định lí Ta-lét và định lí Ta-lét đảo. Qua chuyên đề này, học sinh sẽ được hỗ trợ trong quá trình học tập chương trình Hình học lớp 8, cụ thể là chương 3 về tam giác đồng dạng. Việc tìm hiểu kỹ lưỡng về định lí đảo và hệ quả của định lí Ta-lét sẽ giúp họ áp dụng thành thạo vào việc giải các bài toán và phát triển kỹ năng suy luận hình học.
Chuyên đề định lí Ta-lét trong tam giác
Nội dung Chuyên đề định lí Ta-lét trong tam giác Bản PDF Chuyên đề định lí Ta-lét trong tam giác là một phần quan trọng của chương trình Hình học lớp 8. Tài liệu này bao gồm 11 trang, cung cấp kiến thức cần phải nắm vững, phân tích và hướng dẫn giải các dạng toán liên quan đến định lí Ta-lét trong tam giác.Trong tài liệu này, chúng ta sẽ tìm hiểu về cách tính tỉ số hai đoạn thẳng và chia đoạn thẳng theo tỉ số đã cho. Chúng ta sẽ áp dụng định nghĩa tỉ số của hai đoạn thẳng, sử dụng kĩ thuật đại số hóa hình học và lập tỉ lệ thức giữa các đoạn thẳng tỉ lệ.Ngoài ra, chúng ta cũng sẽ làm quen với cách tính độ dài đoạn thẳng sử dụng định lí Ta-lét, dựng đoạn thẳng tỉ lệ thứ tư khi biết độ dài của ba đoạn thẳng khác, và chứng minh các hệ thức hình học trong tam giác. Chúng ta cũng sẽ học cách vẽ thêm đường thẳng song song để tính tỉ số giữa hai đoạn thẳng.Tài liệu cũng kèm theo các bài tập từ cơ bản đến nâng cao để học sinh tự rèn luyện và kiểm tra kiến thức của mình. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ vấn đề và phát triển kỹ năng giải toán.Tóm lại, tài liệu này hỗ trợ học sinh trong việc học tập chuyên đề định lí Ta-lét trong tam giác, giúp họ nắm vững kiến thức và áp dụng vào thực hành một cách hiệu quả.