Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 11 năm 2023 - 2024 trường THPT Nguyễn Khuyến - An Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2023 – 2024 trường THPT Nguyễn Khuyến, tỉnh An Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 11 năm 2023 – 2024 trường THPT Nguyễn Khuyến – An Giang : + Một bồn chứa nước hình trụ bằng bê tông cao 4 mét, đặt vuông góc với măt đất, chỉ chừa một nắp nhỏ bên ngoài để bơm nước vào bồn, trong bồn có sẵn một lượng nước. Để đo chiều cao mực nước trong bồn người ta có cách đo như sau: Lấy một cây sào tre có chiều cao 5 mét nhúng vào thùng nước sao cho có một đầu chạm đáy và một đầu chạm với mặt trên của bồn nước (như hình vẽ) sau khi rút sào tre thì đo được phần sào tre bị ước là 1,5mét. Hỏi mực nước trong bồn cao bao nhiêu mét. + Trong một lần Đoàn trường Nguyễn Khuyến tổ chức chơi bóng chuyền hơi, bạn Nam thả một quả bóng chuyền hơi từ tầng ba, độ cao 8m so với mặt đất và thấy rằng mỗi lần chạm đất thì quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết quả bóng chuyển động vuông góc với mặt đất. Khi đó tổng quảng đường quả bóng đã bay từ lúc thả bóng đến khi quả bóng không máy (nằm im trên mặt đất) nữa gần bằng số nào dưới đây nhất? + Một chiếc cầu bắt qua sông, mặt dưới gầm cầu có dạng hình cung AB biểu thị bởi hàm số 8 cos 2 3 12 x y với x 6 6 π π như hình minh họa sau. Biết qui định chiều cao tối đa của phương tiện giao thông hàng hóa qua lại dưới gầm cầu phải thấp hơn mặt nước gầm ít nhất 0,8 mét. Một sà lan chở khối hàng hóa có hình dạng là một khối hộp chữ nhật với độ cao 5,2 mét so với mặt nước sông muốn đi qua gầm cầu. Tính bề rộng tối đa của khối hàng hóa để sà lan qua được gầm cầu đúng qui định (lấy số π ≈ 3,14).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Vĩnh Viễn - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Vĩnh Viễn, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Vĩnh Viễn – TP HCM : + Cho X = {0; 1; 2; 3; 4; 5; 6}. Hỏi từ X ta có thể lập được bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau. + Cho một hộp có 30 tấm thẻ được đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để chọn được 6 tấm thẻ mang số chẵn và 4 tấm thẻ mang số lẻ. + Tìm số hạng chứa x8 trong khai triển Nhị thức Newton sau đây: (3 – 2x)^20.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT chuyên Trần Đại Nghĩa - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa – TP HCM : + Ba xạ thủ cùng bắn vào bia một cách độc lập, mỗi người bắn một viên đạn. Xác suất bắn trúng đích của ba xạ thủ lần lượt là 0,5; 0,6 và 0,8. Tính xác suất để có ít nhất hai người bắn trúng đích. + Bạn Bình muốn mua một món quà trị giá 900 000 đồng để tặng mẹ nhân ngày sinh nhật của mẹ vào ngày 30/9/2019. Bạn bỏ ống heo tiết kiệm mỗi ngày một lần, bắt đầu từ ngày 01/08/2019 cho đến ngày sinh nhật của mẹ, theo cách: lần đầu tiên bỏ vào ống heo 500 đồng, sau đó cứ lần sau bỏ nhiều hơn lần trước 500 đồng. Hỏi đến sinh nhật mẹ, Bình có đủ tiền mua quà không? + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi E, H, F lần lượt là trung điểm của AD, DC, CB. 1) Gọi I là trung điểm của SF. Chứng minh rằng IO song song với mặt phẳng (SAD). 2) Gọi G, K lần lượt là trọng tâm của tam giác SAD, tam giác SCD, M là trung điểm IF. Chứng minh rằng mặt phẳng (GKI) song song với mặt phẳng (EHM).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Hàn Thuyên - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Một hộp chứa 4 quả cầu đỏ, 5 quả cầu xanh và 7 quả cầu vàng. Lấy ngẫu nhiên cùng lúc 4 quả cầu từ hộp đó. Tính xác suất để trong 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng. + Trong mặt phẳng Oxy, cho hai điểm A(1;3), B(3;0) và đường thẳng có phương trình (d): 3x – 2y + 1 = 0. Tìm ảnh (d’) của (d) qua phép tịnh tiến theo véctơ AB. + Cho tứ diện ABCD có M, N, P lần lượt là trung điểm AB, BC, CD. Gọi G là trọng tâm tam giác BCD; AG cắt MP tại I, AN cắt CM tại J. Chứng minh rằng ba điểm D, I, J thẳng hàng.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Gọi X là tập hợp các số tự nhiên gồm 3 chữ số khác nhau được lập nên từ các chữ số 1; 2; 4; 6; 8; 9. Lấy ngẫu nhiên 1 phần tử của X. Tính xác suất để chọn được số chia hết cho 2. + Một đa giác có độ dài các cạnh lập thành một cấp số cộng có công sai bằng 4(cm), cạnh nhỏ nhất bằng 6(cm) và chu vi của đa giác bằng 126(cm). Tính độ dài cạnh lớn nhất của đa giác. + Dùng phương pháp quy nạp, hãy chứng minh: un = 10^n – 2n^3 – n + 2 luôn chia hết cho 3 với mọi số nguyên dương n.