Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề Toán 8 (tập một) - Phạm Đình Quang

Tài liệu gồm 229 trang, được biên soạn bởi thầy giáo Phạm Đình Quang, tuyển tập các chuyên đề Toán 8 (tập một), giúp học sinh khối lớp 8 tham khảo khi học tập chương trình Toán 8 giai đoạn học kì 1. Mục lục : Phần I ĐẠI SỐ. Chương 1. PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC 1. Bài 1. Nhân đơn thức với đa thức 1. A TÓM TẮT LÝ THUYẾT 1. B BÀI TẬP 1. Bài 2. Nhân đa thức với đa thức 4. A TÓM TẮT LÝ THUYẾT 4. B BÀI TẬP 4. Bài 5. Những hằng đẳng thức đáng nhớ 10. A TÓM TẮT LÝ THUYẾT 10. B BÀI TẬP 13. Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 23. A VÍ DỤ 23. B BÀI TẬP 24. Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 26. A VÍ DỤ 26. B BÀI TẬP 26. Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 28. A VÍ DỤ 28. B BÀI TẬP 29. Bài 9. Phân tích đa thức thành nhân tử bằng các phương pháp khác (tách hạng tử, thêm bớt, đặt ẩn phụ) 33. A VÍ DỤ 33. B BÀI TẬP 33. Bài 10. Chia đơn thức cho đơn thức 42. A LÝ THUYẾT 42. B BÀI TẬP 43. Bài 11. Chia đa thức cho đơn thức 43. A LÝ THUYẾT 43. B BÀI TẬP 44. Bài 12. Chia đa thức một biến đã sắp xếp 45. A LÝ THUYẾT 45. B BÀI TẬP 46. Chương 2. PHÂN THỨC ĐẠI SỐ 52. Bài 1. Bài 1 – 2 – 3 – 4. Phân thức đại số 52. A TÓM TẮT LÝ THUYẾT 52. B BÀI TẬP 52. Bài 2. Bài 5, 6, 7, 8. Phép cộng, trừ, nhân, chia các phân thức đại số 56. A TÓM TẮT LÝ THUYẾT 56. B BÀI TẬP 57. Bài 3. Biến đổi các biểu thức hữu tỉ – giá trị của phân thức đại số 65. A Lý thuyết 65. Phần II HÌNH HỌC. Chương 3. TỨ GIÁC 82. Bài 1. Tứ giác 82. A TÓM TẮT LÝ THUYẾT 82. B BÀI TẬP 83. Bài 2. Hình thang 87. A TÓM TẮT LÝ THUYẾT 87. B BÀI TẬP 88. Bài 3. Hình thang cân 90. A LÝ THUYẾT 90. B BÀI TẬP 91. Bài 4. Đường trung bình 94. A TÓM TẮT LÝ THUYẾT 94. B BÀI TẬP 95. Bài 6. Đối xứng trục 105. A TÓM TẮT LÝ THUYẾT 105. B BÀI TẬP 107. Bài 7. Hình bình hành 110. A TÓM TẮT LÝ THUYẾT 111. B BÀI TẬP 111. Bài 8. Đối xứng tâm 119. A TÓM TẮT LÝ THUYẾT 119. B BÀI TẬP 120. Bài 9. Hình chữ nhật – Đường thẳng song song với một đường thẳng cho trước 127. A TÓM TẮT LÝ THUYẾT 127. B BÀI TẬP 129. Bài 11. Hình thoi 141. A TÓM TẮT LÝ THUYẾT 142. B BÀI TẬP 142. Bài 12. Hình vuông 156. A TÓM TẮT LÝ THUYẾT 156. B BÀI TẬP 157. Chương 4. ĐA GIÁC, DIỆN TÍCH ĐA GIÁC 174. Bài 1. TÓM TẮT LÝ THUYẾT 174. Bài 2. BÀI TẬP 175. Chương 5. Đề thi tham khảo 181. Bài 1. Đề kiểm tra giữa học kì I – Năm học 2009 – 2010 181. Bài 2. Đề kiểm tra giữa học kì I – Năm học 2010 – 2011 183. Bài 3. Đề kiểm tra giữa học kì I – Năm học 2011 – 2012 185. Bài 4. Đề kiểm tra giữa học kì I – Năm học 2012 – 2013 187. Bài 5. Đề kiểm tra giữa học kì I – Năm học 2013 – 2014 189. Bài 6. Đề kiểm tra giữa học kì I – Năm học 2014 – 2015 191. Bài 7. Đề kiểm tra giữa học kì I – Năm học 2015-2016 193. Bài 8. Đề kiểm tra giữa học kì I – Năm học 2016-2017 195. Bài 9. Đề kiểm tra học kì 1 – Năm học 2009 – 2010 197. Bài 10. Đề kiểm tra học kì I năm học 2010 – 2011 199. Bài 11. Đề kiểm tra học kì I năm học 2011 – 2012 202. Bài 12. Đề kiểm tra học kì 1 – Năm học: 2012 – 2013 206. Bài 13. Đề kiểm tra học kì I năm học 2013 – 2014 209. Bài 14. Đề kiểm tra học kì I năm học 2014 – 2015 213. Bài 15. Đề kiểm tra học kì I năm học 2015 – 2016 – Quận 1 216. Bài 16. Đề kiểm tra học kì I năm học 2016 – 2017 – Quận 1 219.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình thoi
Nội dung Chuyên đề diện tích hình thoi Bản PDF - Nội dung bài viết Một bộ tài liệu chuyên về diện tích hình thoi Một bộ tài liệu chuyên về diện tích hình thoi Tài liệu này bao gồm 14 trang chứa thông tin chi tiết về diện tích hình thoi, được chia thành ba phần chính. Phần I: Kiến thức cơ bản Trong phần này, bạn sẽ được học về cách tính diện tích của tứ giác có hai đường chéo vuông góc và diện tích hình thoi. Đặc biệt, bạn sẽ biết rằng diện tích hình thoi có thể tính bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. Phần II: Một số dạng bài tập Trong phần này, bạn sẽ được hướng dẫn cách giải các dạng bài tập phổ biến như tính diện tích của tứ giác có hai đường chéo vuông góc và tính diện tích hình thoi. Bạn cũng sẽ tìm hiểu cách tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phần III: Phiếu bài tự luyện Phần cuối cùng cung cấp cho bạn một phiếu bài tập tự luyện để thực hành và kiểm tra kiến thức của mình. Đáp án và lời giải chi tiết sẽ giúp bạn hiểu rõ hơn và nâng cao kỹ năng giải bài tập về diện tích hình thoi.
Chuyên đề diện tích hình thang
Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.
Chuyên đề diện tích tam giác
Nội dung Chuyên đề diện tích tam giác Bản PDF - Nội dung bài viết Chuyên đề diện tích tam giácTóm tắt lý thuyếtBài tập và các dạng toánPhiếu bài tự luyện Chuyên đề diện tích tam giác Tài liệu này bao gồm 11 trang, cung cấp kiến thức về diện tích tam giác cần đạt, phân loại và hướng dẫn giải các dạng bài tập liên quan đến chuyên đề này. Nội dung tài liệu được tóm tắt từ lý thuyết về trọng tâm tam giác, cách tính diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết Diện tích tam giác có thể tính bằng nửa tích của một cạnh nhân với chiều cao tương ứng. Tài liệu cũng chú ý đến tỉ số diện tích của hai tam giác khi có một cạnh hoặc một đường cao bằng nhau. Bài tập và các dạng toán Tài liệu cung cấp các dạng bài tập minh họa như: Tính toán, chứng minh về diện tích tam giác; Sử dụng công thức tính diện tích để tìm độ dài đoạn thẳng; Chứng minh hệ thức về diện tích; Tìm vị trí điểm thỏa mãn đẳng thức về diện tích; Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải các dạng toán được hướng dẫn chi tiết, từ việc sử dụng công thức tính diện tích đến phát hiện mối quan hệ giữa các yếu tố trong tam giác. Điều này giúp học sinh nắm vững kiến thức và áp dụng linh hoạt trong giải các bài tập. Phiếu bài tự luyện Tài liệu cuối cùng cung cấp phiếu bài tập tự luyện để học sinh có thể kiểm tra kiến thức và rèn luyện kỹ năng giải bài tập liên quan đến diện tích tam giác. Đây là cơ hội cho học sinh tự kiểm tra và nâng cao khả năng giải bài toán trong chuyên đề này.
Chuyên đề diện tích hình chữ nhật
Nội dung Chuyên đề diện tích hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề diện tích hình chữ nhật Chuyên đề diện tích hình chữ nhật Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình chữ nhật. Nội dung tài liệu được tuyển chọn từ cơ bản đến nâng cao, giúp học sinh hiểu rõ về chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. Tóm tắt lý thuyết: 1. Khái niệm diện tích đa giác: Diện tích đa giác là số đo phần mặt phẳng giới hạn bởi một đa giác. Diện tích đa giác có các tính chất: hai tam giác bằng nhau có diện tích bằng nhau, chia đa giác thành các đa giác không có điểm chung thì diện tích bằng tổng diện tích các đa giác đó, và đơn vị diện tích của hình vuông tương ứng với đơn vị đo được chọn. 2. Công thức tính diện tích hình cơ bản: - Diện tích hình chữ nhật: bằng tích hai kích thước của nó. - Diện tích hình vuông: bằng bình phương cạnh. - Diện tích tam giác vuông: bằng nửa tích hai cạnh góc vuông. - Diện tích tam giác thường: bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. Bài tập và các dạng toán: A. Các dạng bài minh họa: - Tính diện tích đa giác. - Diện tích hình chữ nhật. - Diện tích hình vuông. - Diện tích tam giác vuông. - Tổng hợp các dạng trên. B. Phiếu bài tự luyện: - Diện tích hình chữ nhật. - Tính độ dài các cạnh của hình chữ nhật. - Diện tích hình vuông và tam giác vuông. - Bài tập tổng hợp. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập, hiểu rõ về diện tích hình chữ nhật và áp dụng vào các dạng bài tập phong phú.