Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 3 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian phát đề; đề thi có đáp án. Trích dẫn Đề khảo sát lần 3 Toán lớp 10 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Vòng chung kết “Học sinh tài năng” ở một trường THPT có 7 thí sinh dự thi trong đó có Long và Thắm. Mỗi thí sinh chọn một câu hỏi thuộc một trong bốn chủ đề: Âm nhạc, thể thao, lịch sử, khoa học để trả lời. Số cách chọn sao cho chủ đề nào cũng có thí sinh chọn và hai bạn Long, Thắm luôn chọn cùng chủ đề bằng? + Cho hòn đảo D cách bờ 4km (CD km 4). Ngôi làng B cách C một khoảng 7km. Nhà nước muốn xây dựng một trạm y tế A trên đất liền sao cho có thể phục vụ được cho dân cư ở cả đảo D và làng B. Biết trung bình vận tốc di chuyển tàu cứu thương là 100 km h xe cứu thương là 80 km h. Vậy nên đặt trạm y tế A cách đảo D bao xa để thời gian cứu thương cho hai địa điểm là như nhau? (tham khảo hình vẽ bên dưới). + Ông A có một mảnh vườn hình elip có độ dài trục lớn là 10m, độ dài trục nhỏ là 8m. Ông A chia mảnh vườn elip thành hai phần bởi đường tròn có đường kính bằng độ dài trục nhỏ và có tâm trùng với tâm của elip. Ông dự tính sẽ làm một hồ cá hình tròn ở giữa miếng đất, phần còn lại ông sẽ trồng cỏ (mô tả như hình vẽ). Biết diện tích của một elip có phương trình chính tắc 2 2 1 x y E a b có công thức là S ab. Diện tích phần trồng cỏ là (làm tròn đến hai chữ số thập phân)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề Olympic tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề Olympic Toán 10 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 10 năm học 2020 – 2021. Đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Tìm tham số b và c sao cho hàm số có đồ thị là một đường parabol  với đỉnh là I(2;5). + Lập bảng biến thiên của hàm số. Từ đó hãy tìm tham số m sao cho phương trình có nghiệm duy nhất. + Cho tam giác ABC. Tam giác ABC có hai đường trung tuyến BM và CN vuông góc với nhau tại trọng tâm G. Tính theo a diện tích tam giác ABC.
Đề học sinh giỏi Toán 10 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề học sinh giỏi Toán 10 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Trong mặt phẳng với tọa độ Oxy, cho tam giác ABC, BE và CD là các đường cao của tam giác.Giả sử D(2;0), E(1;3) và đường thẳng BC có phương trình: y = 1 – 2x. a/ Tìm tọa độ của M biết M là trung điểm của BC. b/ Tìm tọa độ của điểm B biết B có hoành độ dương. + Cho các số thực x, y, z thỏa mãn x + y + z = 0, x2 + y2 + z2 = 8. Tìm giá trị nhỏ nhất của biểu thức S = |x| + |y| + |z|. + Cho lục giác ABCDEF có AB vuông góc với EF và hai tam giác ACE và BDF có cùng trọng tâm. Chứng minh rằng AB2 + EF2 = CD2.
Đề HSG cấp trường Toán 10 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề HSG cấp trường Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Cho hàm số bậc hai với m là tham số. a) Vẽ đồ thị hàm số (1) khi m = 2. b) Tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi giá trị của m. c) Tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. a) Tìm tọa điểm D sao cho DA DB DC. b) Viết phương trình đường thẳng đi qua D và tạo với đường thẳng AB góc 45°. c) Tính bán kính đường tròn ngoại tiếp tam giác ABC. +  Cho ba số thực thỏa mãn x + y + z = 4. Tìm giá trị lớn nhất của biểu thức.