Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Quang Trung - TP HCM

Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, vừa qua, trường THPT Quang Trung, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Quang Trung – TP HCM có mã đề 216, đề thi có 04 trang với 30 câu trắc nghiệm và 08 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Quang Trung – TP HCM : + Cho hình phẳng được giới hạn bởi (C) y = x^2 và (d): y = 4. Tính thể tích của vật thể tròn xoay khi quay hình phẳng đó quanh trục Ox. Thể tích V = pi.a/b (a và b là hai số nguyên tố cùng nhau). Khi đó S = a + b là? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;1) và mặt phẳng (P): 2x + y + 2z + 2 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có đường kính bằng 8. Phương trình của mặt cầu (S) là? + Tập hợp các điểm biểu diễn số phức z thoả mãn |z – 3 + 2i| ≤ 2 trên mặt phẳng toạ độ là: A. Hình tròn tâm (3;-2), bán kính bằng 2. B. Hình tròn tâm (−3;2), bán kính bằng 2. C. Đường tròn tâm (3;-2), bán kính bằng 2. D. Đường tròn tâm (−3;2), bán kính bằng 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 12 năm 2023 - 2024 trường THPT Nguyễn Trãi - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi kết thúc học kỳ 2 môn Toán 12 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 135 208 359 487. Trích dẫn Đề thi học kỳ 2 Toán 12 năm 2023 – 2024 trường THPT Nguyễn Trãi – Thái Bình : + Trong không gian Oxyz cho mặt cầu Sx y z 6 26 0 và đường thẳng 1 21 x y z d. Biết rằng trên đường thẳng d luôn tồn tại điểm M xyz với x > 0 sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) thỏa mãn AMB = 60, BMC = 90, CMA = 120. Khi đó giá trị biểu thức x y z 2 bằng? + Một khối trụ có thể tích 100π. Nếu chiều cao khối trụ tăng lên ba lần và giữ nguyên bán kính đáy thì được khối trụ mới có diện tích xung quanh bằng 100π. Bán kính đáy khối trụ ban đầu là? + Cho hàm số 3 2 fx và gx m (với m là m tham số thực) cùng với x 1 1 là hai điểm cực trị trong nhiều điểm cực trị của hàm số y gx. Khi đó số điểm cực trị của hàm y gx là?
Đề thi học kỳ 2 Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng cuối học kỳ 2 môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình trụ có chiều cao bằng 6 a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3 a thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng? + Hình phẳng được tô đậm trong hình bên được giới hạn bởi đường tròn, đường parabol, trục hoành. Tính thể tích khối tròn xoay được tạo thành khi quay hình phẳng đã cho quanh trục Ox. + Trong không gian Oxyz, biết mặt phẳng (P) đi qua điểm M 123 và cắt các trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức OA OB OC có giá trị nhỏ nhất. Khi đó mặt phẳng P đi qua điểm nào sau đây?
Đề thi thử cuối kỳ 2 Toán 12 năm 2022 - 2023 trường THPT Đông Hà - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kiểm tra cuối học kỳ 2 môn Toán 12 năm học 2022 – 2023 trường THPT Đông Hà, tỉnh Quảng Trị; đề thi hình thức trắc nghiệm, gồm 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử cuối kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Đông Hà – Quảng Trị : + Trong hệ trục tọa độ Oxy, cho parabol 2 Pyx và hai đường thẳng y a y b (0 a b) (hình vẽ). Gọi 1 S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y a (phần tô đen); (S2) là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì 1 2 S S? + Trong không gian với hệ tọa độ cho mặt phẳng đi qua điểm cắt các tia tại (không trùng với gốc tọa độ). Thể tích tứ diện đạt giá trị nhỏ nhất là bao nhiêu? + Trong không gian Oxyz, cho đường thẳng 1 111 xy z ∆ và hai điểm A(1;2;-5), B(−1;0;2). Biết điểm M thuộc ∆ sao cho biểu thức T MA MB đạt giá trị lớn nhất là Tmax. Khi đó Tmax bằng bao nhiêu?