Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 88 trang, tuyển tập các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán; tài liệu được biên soạn dựa theo cấu trúc đề tuyển sinh lớp 10 THPT môn Toán của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Bài 1. Căn bậc hai, căn bậc ba 4. + Dạng 1.1: Tính giá trị biểu thức 4. + Dạng 1.2: Rút gọn biểu thức và tính giá trị 4. Bài 2. Bài toán hàm số bậc nhất – bậc hai 6. + Dạng 2.1: Giải bài toán tương giao giữa (P), (D) bằng phép toán và đồ thị 6. + Dạng 2.2: Bài toán tương giao giữa (P) và (D) có chứa tham số 9. Bài 3. Phương trình bậc 2 – Định lý Vi-et 9. + Dạng 3.1: Tính giá trị biểu thức bằng định lí vi-et 9. + Dạng 3.2: Giải phương trình bậc 2 chứa tham số bằng công thức Vi-et 11. Bài 4. Bài toán thực tế – suy luận 14. + Dạng 4.1: Bài toán CAN-CHI 14. + Dạng 4.2: Bài toán xác định năm nhuận DƯƠNG, nhuận ÂM 15. + Dạng 4.3: Bài toán xác định thứ, ngày, tháng trong năm 16. + Dạng 4.4: Bài toán xác định múi giờ trái đất 17. + Dạng 4.5: Bài toán thi đấu thể thao 18. + Dạng 4.6: Bài toán xác định chỉ số sinh học của con người 18. + Dạng 4.7: Bài toán về mua bán, kinh doanh sản phẩm tiêu dùng 19. + Dạng 4.8: Các bài toán tính phần tử trong tập hợp 20. + Dạng 4.9: Các dạng toán suy luận 21. Bài 5. Bài toán thực tế – ứng dụng hàm số 22. + Dạng 5.1: Bài toán cho sẵn hàm số bậc nhất 22. + Dạng 5.2: Tìm hệ số a, b trong hàm số bậc nhất mô tả các đại lượng bài toán 23. + Dạng 5.3: Lập hàm số mô tả các đại lượng trong bài toán thực tế 28. + Dạng 5.4: Cho sẵn hàm số mô tả đại lượng bài toán, tìm y biết x 31. Bài 6. Bài toán thực tế – Tỉ lệ phần trăm 33. + Dạng 6.1: Bài toán lời lỗ trong kinh doanh, giảm và tăng sản phẩm 33. + Dạng 6.2: Bài toán kinh doanh có tính thuế sản phẩm 34. + Dạng 6.3: Bài toán kinh doanh khuyến mãi sản phẩm 35. + Dạng 6.4: Bài toán tính lương, thu nhập của công nhân 36. + Dạng 6.5: Bài toán lãi suất ngân hàng 37. + Dạng 6.6: Bài toán tỉ lệ học sinh 38. + Dạng 6.7: Bài toán về dân số 38. + Dạng 6.8: Bài toán tính trung bình, tính phần trăm hợp chất 39. Bài 7. Giải toán bằng cách lập phương trình 41. + Dạng 7.1: Lập hệ phương trình bậc nhất một ẩn 41. + Dạng 7.2: Lập phương trình bậc hai, một ẩn 42. Bài 8. Giải toán đố bằng cách lập hệ phương trình 43. + Dạng 8.1: Lập hệ phương trình hai ẩn bậc nhất 43. + Dạng 8.2: Lập hệ phương trình hai ẩn giải bằng phương pháp đặc biệt 45. + Dạng 8.3: Lập hệ phương trình ba ẩn bậc nhất 46. Bài 9. Bài toán thực tế – hình học phẳng 49. + Dạng 9.1: Sử dụng tỉ số lượng trong tam giác vuông 49. + Dạng 9.2: Sử dụng hệ thức lượng trong tam giác vuông 52. + Dạng 9.3: Sử dụng công thức tính chu vi, diện tích đa giác, hình tròn 53. Bài 10. Bài toán thực tế – hình học không gian 55. + Dạng 10.1: Tính diện tích, thể tích khối chop, khối lăng trụ 55. + Dạng 10.2: Tính diện tích, thể tích khối tròn xoay(nón trụ cầu) 57. + Dạng 10.3: Bài toán liên quan khối chóp, khối lăng trụ và khối tròn xoay 64. Bài 11. Hình học phẳng – Đường tròn 67. + Dạng 11.1: Từ một đểm nằm ngoài đường tròn, kẻ 2 tiếp tuyến 67. + Dạng 11.2: Đường tròn có đường kính cho trước 78. Bài 12. Đề toán tuyển sinh 10 qua các năm 81.

Nguồn: toanmath.com

Đọc Sách

Các bài toán về phần nguyên trong số học
Tài liệu gồm 33 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về phần nguyên trong số học, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Định nghĩa. + Phần nguyên của số thực x là số nguyên lớn nhất không vượt quá x, kí hiệu là [x]. + Phần lẻ của số thực x là hiệu của x với phần nguyên của nó, kí hiệu là {x}. 2. Tính chất. B. CÁC DẠNG TOÁN THƯỜNG GẶP Dạng 1 : Tìm phần nguyên của một số hoặc một biểu thức. Để tính giá trị một biểu thức chứa phần nguyên, ta cần sử dụng các tính chất của phần nguyên, kết hợp với các kĩ thuật tính toán khác đặc biệt là phương pháp “kẹp”. Dạng 2 : Chứng minh một đẳng thức chứa phần nguyên. Chứng minh các hệ thức chứa phần nguyên thực chất có thể coi là chứng minh các tính chất của phần nguyên. Để chứng minh các hệ thức chứa phần nguyên ta phải sử dụng các tính chất đã được nêu trong phần lý thuyết, kết hợp với các kĩ thuật đại số và số học. Dạng 3 : Phương trình chứa phần nguyên. 1. Phương trình có dạng [f(x)] = a (a thuộc Z). 2. Phương trình có dạng [f(x)] = g(x). 3. Phương trình có dạng [f(x)] = [g(x)]. 4. Phương trình chứa nhiều dấu phần nguyên. Sử dụng tính chất của phần nguyên, phân tích đa thức thành nhân tử, đặt ẩn phụ (nếu cần) để đưa về phương trình ít phần nguyên hơn. 5. Phương trình dạng hỗi hợp. Có những phương trình chứa của phần nguyên và phần dư, hoặc phần nguyên với các phép toán khác (lũy thừa, căn thức …) ta xếp chúng vào dạng phương trình hỗn hợp. Giải chúng nói chung là khó, cần kết hợp nhiều suy luận và kĩ thuật khác nhau, như dùng định nghĩa, chia khoảng, sử dụng tính chất số nguyên của [x] hoặc tính chất 0 ≤ {x} < 1, các tính chất x nguyên khi và chỉ khi {x} = 0 hoặc [x] = x, các phương pháp của đại số như đặt ẩn phụ, biến đổi tương đương hệ phương trình. Dạng 4 : Bất phương trình chứa phần nguyên. Khi giải bất phương trình có chứa dấu phần nguyên, ta thường đặt biểu thức [f(x)] = t (t nguyên) để chuyển về giải bất phương trình không còn chứa dấu phần nguyên, rồi vận dụng định nghĩa và tính chất của phần nguyên để tìm ra nghiệm của bất phương trình. Dạng 5 : Phần nguyên trong chứng minh một số dạng toán số học. Phần nguyên được ứng dụng khá nhiều trong giải các bài toán số học về số tận cùng, chia hết, số nguyên tố … chúng ta cùng đến với các ví dụ cụ thể. Dạng 6 : Chứng minh bất đẳng thức có chứa phần nguyên. Để chứng minh các bất đẳng thức phần nguyên ta phải sử dụng linh hoạt các tính chất đã được nêu trong phần lý thuyết. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Các bài toán về phương trình nghiệm nguyên
Tài liệu gồm 405 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về phương trình nghiệm nguyên, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Giải phương trình nghiệm nguyên. 2. Một số lưu ý khi giải phương trình nghiệm nguyên. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ … để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. Các phương pháp thường dùng để giải phương trình nghiệm nguyên là: + Phương pháp dùng tính chất chia hết. + Phương pháp xét số dư từng vế. + Phương pháp sử dụng bất đẳng thức. + Phương pháp dùng tính chất của số chính phương. + Phương pháp lùi vô hạn, nguyên tắc cực hạn. B. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN I. PHƯƠNG PHÁP DÙNG TÍNH CHIA HẾT + Dạng 1: Phát hiện tính chia hết của một ẩn. + Dạng 2: Phương pháp đưa về phương trình ước số. + Dạng 3: Phương pháp tách ra các giá trị nguyên. II. PHƯƠNG PHÁP SỬ DỤNG TÍNH CHẴN LẺ CỦA ẨN HOẶC XÉT SỐ DƯ TỪNG VẾ + Dạng 1: Sử dụng tính chẵn lẻ. + Dạng 2: Xét tính chẵn lẻ và xét số dư từng vế. III. PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC + Dạng 1: Sử dụng bất đẳng thức cổ điển. + Dạng 2: Sắp xếp thứ tự các ẩn. + Dạng 3: Chỉ ra nghiệm nguyên. + Dạng 4: Sử dụng điều kiện ∆ ≥ 0 để phương trình bậc hai có nghiệm. IV. PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG + Dạng 1: Dùng tính chất về chia hết của số chính phương. + Dạng 2: Biến đổi phương trình về dạng a1.A1^2 + a2.A2^2 + … + an.An^2 = k, trong đó Ai (i = 1 … n) là các đa thức hệ số nguyên, ai là số nguyên dương, k là số tự nhiên. + Dạng 3: Xét các số chính phương liên tiếp. + Dạng 4: Sử dụng điều kiện ∆ là số chính phương. + Dạng 5: Sử dụng tính chất: Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên liên tiếp đó bằng 0. + Dạng 6: Sử dụng tính chất: Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đều là số chính phương. V. PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN + Dạng 1: Phương pháp lùi vô hạn. + Dạng 2: Nguyên tắc cực hạn. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Ứng dụng đồng dư thức trong giải toán số học
Tài liệu gồm 32 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn ứng dụng đồng dư thức trong giải toán số học, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ I. Định nghĩa II. Tính chất 1. Tính chất phản xạ. 2. Tính chất đối xứng. 3. Tính chất bắc cầu. 4. Cộng hay trừ từng vế của đồng dư thức có cùng môđun. 5a. Nhân hai vế của đồng dư thức với một số nguyên. 5b. Nhân hai vế và môđun của đồng dư thức với một số nguyên dương. 6. Nhân từng vế của nhiều đồng dư thức có cùng môđun. 7. Nâng hai vế của một đồng dư thức lên cùng một lũy thừa. 8. Nếu hai số đồng dư với nhau theo nhiều môđun thì chúng đồng dư với nhau theo môđun là BCNN của các môđun ấy. 9. Nếu a ≡ b (mod m) thì tập hợp các ước chung của a và m bằng tập hợp các ước chung của b và m. 10. Chia hai vế và môđun của một đồng dư cho một ước dương chung của chúng. B. CÁC DẠNG TOÁN THƯỜNG GẶP + Dạng 1: Sử dụng đồng dư thức trong các bài toán chứng minh chia hết. + Dạng 2: Sử dụng đồng dư thức tìm số dư. + Dạng 3: Tìm điều kiện của biến để chia hết. + Dạng 4: Tìm một chữ số tận cùng. + Dạng 5: Tìm hai chữ số tận cùng. + Dạng 6: Sử dụng đồng dư thức trong các bài toán về số chính phương. + Dạng 7: Sử dụng đồng dư thức trong các bài toán về số nguyên tố, hợp số. + Dạng 8: Sử dụng đồng dư thức trong các bài toán giải phương trình nghiệm nguyên. + Dạng 9: Sử dụng các định lý (ta thừa nhận không chứng minh). C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Các bài toán về số chính phương
Tài liệu gồm 69 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về số chính phương, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Định nghĩa số chính phương. 2. Một số tính chất cần nhớ. B. CÁC DẠNG TOÁN THƯỜNG GẶP Dạng 1 : Chứng minh một số là số chính phương, hoặc là tổng nhiều số chính phương. Để chứng minh một số n là số là số chính phương ta thường dựa vào định nghĩa, tức là chứng minh n = k^2 (k thuộc Z). Dạng 2 : Chứng minh một số không là số chính phương. Để chứng minh n không là số chính phương, tùy vào từng bài toán ta có thể sử dụng các cách sau: 1) Chứng minh n không thể viết được dưới dạng một bình phương một số nguyên. 2) Chứng minh k2 < n < (k + 1)2 với k là số nguyên. 3) Chứng minh n có tận cùng là 2; 3; 7; 8. 4) Chứng minh n có dạng 4k + 2; 4k + 3. 5) Chứng minh n có dạng 3k + 2. 6) Chứng minh n chia hết cho số nguyên tố p mà không chia hết cho p2. Dạng 3 : Điều kiện để một số là số chính phương. Chúng ta thường sử dụng các phương pháp sau: + Phương pháp 1: Sử dụng định nghĩa. + Phương pháp 2: Sử dụng tính chẵn, lẻ. + Phương pháp 3: Sử dụng tính chất chia hết và chia có dư. + Phương pháp 4: Sử dụng các tính chất. Dạng 4 : Tìm số chính phương. Dựa vào định nghĩa về số chính phương A = k^2 với k là số nguyên và các yêu cầu của bài toán để tìm ra số chính phương thỏa bài toán. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ