Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bà Rịa - Vũng Tàu

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bà Rịa – Vũng Tàu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu, kỳ thi được diễn ra vào ngày 13/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu : + Có một vụ tai nạn ở vị trí B tại chân của một ngọn núi (chân núi có dạng đường tròn tâm O, bán kính 3 km) và một trạm cứu hộ ở vị trí A (tham khảo hình vẽ). Do chưa biết đường đi nào để đến vị trí tai nạn nhanh hơn nên đội cứu hộ quyết định điều hai xe cứu thương cùng xuất phát ở trạm đến vị trí tai nạn theo hai cách sau: Xe thứ nhất: đi theo đường thẳng từ A đến B, do đường xấu nên vận tốc trung bình của xe là 40 km/h. Xe thứ hai: đi theo đường thẳng từ A đến C với vận tốc trung bình 60 km/h, rồi đi từ C đến B theo đường cung nhỏ CB ở chân núi với vận tốc trung bình 30 km/h (3 điểm A, O, C thẳng hàng và C ở chân núi). Biết đoạn đường AC dài 27 km và góc ABO = 90 độ. a) Tính độ dài quãng đường xe thứ nhất đi từ A đến B. b) Nếu hai xe cứu thương xuất phát cùng một lúc tại A thì xe nào thì xe nào đến vị trí tai nạn trước? [ads] + Cho nửa đường tròn tâm O đường kính AB và E là điểm tùy ý trên nửa đường tròn đó (E khác A, B). Lấy điểm H thuộc đoạn EB (H khác E, B). Tia AH cắt nửa đường tròn tại điểm thứ hai là F. Kéo dài tia AE và tia BF cắt nhau tại I. ðường thẳng IH cắt nửa đường tròn tại P và cắt AB tại K. a) Chứng minh tứ giác IEHF nội tiếp được đường tròn. b) Chứng minh góc AIH = góc ABE. c) Chứng minh: cosABP = (PK + BK)/(PA + PB). d) Gọi S là giao điểm của tia BF và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AHIS nội tiếp được đường tròn, chứng minh EF vuông góc với EK.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi bao gồm đáp án và lời giải chi tiết, được tổ chức vào thứ Hai ngày 29 tháng 05 năm 2023. Trong đề tuyển sinh, có các câu hỏi như sau: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2, đường thẳng (d) có phương trình y = 2x + m^2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). Hãy tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), hãy tìm tất cả các giá trị của tham số m sao cho |x1 − 2023| − |x2 + 2023| = y1 + y2 − 48. Xét đường tròn (O) và tiếp tuyến MA, MB với đường tròn từ điểm M bên ngoài. Chứng minh AECD nội tiếp đường tròn, rằng CDE = CFD, CD vuông góc IK và NC đi qua trung điểm của AB. Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh. Đề thi tuyển sinh chuyên môn Toán năm 2023 - 2024 sở GD&ĐT Hà Nam hứa hẹn sẽ là thách thức đầy hấp dẫn dành cho các thí sinh. Hãy cùng chuẩn bị và vững tin để vượt qua thử thách này!
Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD ĐT Giao Thuỷ Nam Định
Nội dung Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD ĐT Giao Thuỷ Nam Định Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lớp 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ Nam Định Đề khảo sát Toán vào lớp 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ Nam Định Sytu xin chào đến quý thầy cô và các em học sinh lớp 9. Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 của phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định đã được công bố. Đề thi bao gồm câu hỏi và đáp án, cũng như hướng dẫn cách chấm điểm. Để có cái nhìn tổng quan, dưới đây là một vài câu hỏi đáng chú ý trong đề khảo sát: 1. Cho phương trình \(2x^2 - 3mx = 0\) (với m là tham số). a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \(x_1 + x_2 = 3\). 2. Cho đường tròn O bán kính 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho góc AOB = 120 độ. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. 3. Cho đường tròn (O) có dây AB không phải là đường kính, các tiếp tuyến tại A và B cắt nhau tại M. Vẽ tiếp tuyến MCD nằm giữa hai tia MA và MO (MC và MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại I. Chứng minh: a) \( \frac{MA}{MC} = \frac{MD}{MO} \) và \( \frac{MC}{MD} = \frac{OH}{OM} \). b) Tứ giác OHCD nội tiếp và CI là tia phân giác của góc HCM. Hãy chuẩn bị kỹ lưỡng và tự tin để làm bài thi tốt nhé! Chúc các em thành công!
Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024
Nội dung Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bản PDF - Nội dung bài viết Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 - 2024 bao gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo. Tài liệu này là tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán, với các đề thi hình thức 100% tự luận. Thời gian làm bài cho mỗi đề là 90 phút, và đều đi kèm đáp án và lời giải chi tiết. Trong bộ đề này, có một câu hỏi thú vị như sau: "Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả Đen bằng cáp treo khứ hồi. Tuy nhiên, có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên và sẽ đi cáp treo khi xuống. Vì vậy, 5 bạn trẻ mua vé lượt xuống, khiến cho đoàn phải chi ra tổng cộng 9.450.000 đồng. Hỏi giá vé cáp treo khứ hồi và vé lượt là bao nhiêu? Biết rằng giá vé lượt rẻ hơn giá vé khứ hồi 110.000 đồng." Ngoài ra, bộ đề còn đưa ra các bài toán khác như: Tính giá trị của góc BIF trong tam giác ABC vuông tại A; Chứng minh rằng điểm A nằm trên đường tròn ngoại tiếp tam giác EFK trong hình chữ nhật ABCD với các điều kiện đã cho. Qua bộ đề này, học sinh sẽ được rèn luyện kỹ năng giải bài toán, tư duy logic và sự tự tin khi đối mặt với các dạng đề thi tuyển sinh vào lớp 10. Cùng tham gia và thách thức bản thân với những câu hỏi thú vị và bổ ích trong bộ đề ôn thi này nhé!
Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá
Nội dung Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá Bản PDF - Nội dung bài viết Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 tại trường THPT Quảng Xương 1, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào thứ Ba ngày 09 tháng 05 năm 2023, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trích dẫn từ Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá: Trong mặt phẳng tọa độ Oxy, tìm a, b sao cho đường thẳng d có phương trình y=ax+b, với hệ số góc bằng 3 và cắt đường thẳng ∆ y=x/2+3 tại điểm có tung độ bằng 5. Tìm tất cả các giá trị của tham số m để phương trình 2x^2 - mx - 10 có hai nghiệm phân biệt thỏa mãn điều kiện x^2 + 12x + 8 > 0. Chứng minh tứ giác AIBH và tứ giác AHCK đều nội tiếp trong đường tròn O, với các điều kiện cụ thể. Mong rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em thành công!