Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bà Rịa - Vũng Tàu

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bà Rịa – Vũng Tàu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu, kỳ thi được diễn ra vào ngày 13/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu : + Có một vụ tai nạn ở vị trí B tại chân của một ngọn núi (chân núi có dạng đường tròn tâm O, bán kính 3 km) và một trạm cứu hộ ở vị trí A (tham khảo hình vẽ). Do chưa biết đường đi nào để đến vị trí tai nạn nhanh hơn nên đội cứu hộ quyết định điều hai xe cứu thương cùng xuất phát ở trạm đến vị trí tai nạn theo hai cách sau: Xe thứ nhất: đi theo đường thẳng từ A đến B, do đường xấu nên vận tốc trung bình của xe là 40 km/h. Xe thứ hai: đi theo đường thẳng từ A đến C với vận tốc trung bình 60 km/h, rồi đi từ C đến B theo đường cung nhỏ CB ở chân núi với vận tốc trung bình 30 km/h (3 điểm A, O, C thẳng hàng và C ở chân núi). Biết đoạn đường AC dài 27 km và góc ABO = 90 độ. a) Tính độ dài quãng đường xe thứ nhất đi từ A đến B. b) Nếu hai xe cứu thương xuất phát cùng một lúc tại A thì xe nào thì xe nào đến vị trí tai nạn trước? [ads] + Cho nửa đường tròn tâm O đường kính AB và E là điểm tùy ý trên nửa đường tròn đó (E khác A, B). Lấy điểm H thuộc đoạn EB (H khác E, B). Tia AH cắt nửa đường tròn tại điểm thứ hai là F. Kéo dài tia AE và tia BF cắt nhau tại I. ðường thẳng IH cắt nửa đường tròn tại P và cắt AB tại K. a) Chứng minh tứ giác IEHF nội tiếp được đường tròn. b) Chứng minh góc AIH = góc ABE. c) Chứng minh: cosABP = (PK + BK)/(PA + PB). d) Gọi S là giao điểm của tia BF và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AHIS nội tiếp được đường tròn, chứng minh EF vuông góc với EK.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tuyển sinh 10 năm 2024 2025 trường THCS Trần Phú Bắc Giang
Nội dung Đề thi thử Toán tuyển sinh 10 năm 2024 2025 trường THCS Trần Phú Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú Bắc Giang Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú Bắc Giang Chúng ta sẽ cùng khám phá đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 của trường THCS Trần Phú, thành phố Bắc Giang, tỉnh Bắc Giang. Kỳ thi sẽ diễn ra vào ngày 20 tháng 02 năm 2024 đầy hấp dẫn. 1. Bài toán thứ nhất đưa ra vấn đề về việc tăng diện tích sân bóng hình chữ nhật của trường. Học sinh sẽ được thách thức khi phải tính toán để tìm ra kích thước ban đầu của sân bóng. 2. Bài toán thứ hai liên quan đến tòa chung cư cao tầng ở TP Bắc Giang và việc xác định số tầng của tòa nhà dựa trên thông tin về chiều cao của cột đèn và chiều cao của mỗi tầng. 3. Bài toán cuối cùng về việc tính vận tốc của người đi bộ tập thể dục trên đoạn đường ven sông Thương là một thử thách thú vị với những thông tin về khoảng cách và vận tốc của người đó. Bằng cách thử sức với những bài toán thú vị cùng với đề thi thử Toán, các em học sinh sẽ cải thiện kỹ năng giải quyết vấn đề và chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.
Đề thi thử Toán vào 10 lần 1 năm 2024 2025 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào 10 lần 1 năm 2024 2025 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 1 năm 2024 2025 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào 10 lần 1 năm 2024 2025 trường Lương Thế Vinh Hà Nội Chào mừng đến với đề thi thử môn Toán cho kỳ tuyển sinh vào lớp 10 tại trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội, năm học 2024 - 2025. Đề thi này bao gồm các câu hỏi sau: Câu 1: Cho ba đường thẳng (d1): y = x + 2; (d2): y = 2x + 1; (d3): y = (m2 + 1)x + m. a) Tìm giá trị của m để đường thẳng (d2) và (d3) song song với nhau. b) Tìm tọa độ giao điểm của (d1) và (d2). c) Tìm các giá trị của m để ba đường thẳng trên đồng quy tại một điểm. Câu 2: Một người quan sát từ đỉnh của một ngọn Hải Đăng cao 350 m so với mực nước biển, nhìn thấy một chiếc thuyền bị nạn dưới góc 20° so với phương ngang của mực nước biển. Hỏi để đi theo phương ngang từ chân ngọn Hải Đăng đến cứu con thuyền cần đi quãng đường bao nhiêu mét? (Kết quả được làm tròn đến chữ số thập phân thứ nhất). Câu 3: Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EM vuông góc với AO tại H. a) Tính độ dài dây EM khi biết R = 5cm, OH = 3cm. b) Chứng minh: AM là tiếp tuyến của đường tròn (O). c) Chứng minh E, O, F thẳng hàng. d) Chứng minh AE = DQ. Để chuẩn bị tốt cho kỳ thi, hãy cùng rèn luyện và giải các câu hỏi trên. Chúc các em học sinh thành công!
Đề thi thử Toán vào năm 2024 2025 trường THCS Việt Ngọc Bắc Giang
Nội dung Đề thi thử Toán vào năm 2024 2025 trường THCS Việt Ngọc Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2024 - 2025 trường THCS Việt Ngọc Bắc Giang Đề thi thử Toán vào năm 2024 - 2025 trường THCS Việt Ngọc Bắc Giang Chào các thầy, cô giáo và các bạn học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 - 2025 của trường THCS Việt Ngọc, huyện Tân Yên, tỉnh Bắc Giang. Kỳ thi diễn ra vào ngày 17 tháng 12 năm 2023. Đề thi bao gồm các câu hỏi trắc nghiệm và tự luận, kèm theo đáp án và hướng dẫn chấm điểm. Mỗi bài có mã đề tương ứng để các bạn dễ dàng nhận biết, bao gồm MÃ T001, MÃ T002, MÃ T003. Dưới đây là một số câu hỏi trong đề thi: Giải phương trình \(2x^m = x^{2m}\) với \(m = 1011\). Tìm m để phương trình có hai nghiệm, trong đó một nghiệm gấp đôi nghiệm còn lại. Minh muốn mua 1 chiếc bút bi và 1 chiếc bút chì để làm bài. Nếu Minh đã chi hết 30000 đồng tại cửa hàng, hãy tính giá của mỗi loại bút biết rằng tổng tiền mua 5 bút bi và 3 bút chì bằng tổng tiền mua 2 bút bi và 5 bút chì. Cho tam giác ABC có đường cao AH. Lấy D trên AH sao cho M và N lần lượt là hình chiếu vuông góc của D trên AB và AC. Hãy chứng minh rằng tứ giác BMDH nội tiếp và MN song song với tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC. Nhanh tay tải file WORD này về để chuẩn bị kỹ lưỡng cho kỳ thi tuyển sinh sắp tới nhé!
Đề thi thử Toán vào năm 2024 trường THCS Hoằng Thanh Thanh Hóa
Nội dung Đề thi thử Toán vào năm 2024 trường THCS Hoằng Thanh Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2024 trường THCS Hoằng Thanh Thanh Hóa Đề thi thử Toán vào năm 2024 trường THCS Hoằng Thanh Thanh Hóa Xin chào các thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến mọi người đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 của trường THCS Hoằng Thanh, huyện Hoằng Hóa, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 17 tháng 12 năm 2023. Đề thi bao gồm các câu hỏi sau: Cho hai đường thẳng (d1): y = –x + m + 2 và (d2): y = (m^2 – 2)x + 3. Tìm m để (d1) và (d2) song song với nhau. Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MA với đường tròn và tia Mx cắt đường tròn tại C và D. Gọi I là trung điểm của CD, kẻ AH vuông góc với MO tại H. Hãy tính OH.OM theo R và chứng minh rằng bốn điểm M, A, I, O cùng thuộc một đường tròn. Cuối cùng, gọi K là giao điểm của OI với HA, chứng minh rằng KC là tiếp tuyến của đường tròn (O; R). Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức P = 1 + 3/(xy + yz + xz). Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em ôn tập hiệu quả!