Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Nam Định

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GDĐT thành phố Nam Định Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GDĐT thành phố Nam Định Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo thành phố Nam Định. Đề thi bao gồm các câu hỏi sau: + Đề bài 1: Cho đường tròn (O) có đường kính BC. Gọi điểm A là điểm trên tiếp tuyến tại B của đường tròn đó. Vẽ dây CE của đường tròn (O) sao cho CE song song với OA, và gọi H là điểm cắt của BE và OA. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O). b) Tia AO cắt đường tròn (O) tại hai điểm F, K (trong đó F nằm giữa O và A). Chứng minh rằng: i) FCO = FCE. ii) AK.CH = KH.CA. + Đề bài 2: Đường thẳng (d) chia tam giác ABC thành hai phần có chu vi và diện tích bằng nhau. Chứng minh rằng (d) đi qua tâm của đường tròn nội tiếp tam giác ABC. + Đề bài 3: Có 6 chiếc hộp, mỗi hộp chứa một số hạt đậu lần lượt là k1, k2, k3, k4, k5, k6 sao cho k1^3 + k2^3 + k3^3 + k3^4 + k5^3 + k6^3 = 2024. Sau đó thực hiện thuật toán chọn ngẫu nhiên ba hộp bất kỳ rồi bỏ vào mỗi hộp 1 hạt đậu. Hỏi sau một số lần thực hiện, số hạt đậu trong 6 hộp có bằng nhau không?

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS năm 2021 – 2022 phòng GD&ĐT thành phố Sơn La; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2022.
Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.
Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.