Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 THPT Lương Ngọc Quyến Thái Nguyên

Nội dung Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 THPT Lương Ngọc Quyến Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng giữa học kì 2 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án mã đề 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124. Trích dẫn Đề giữa kì 2 Toán lớp 12 năm 2022 – 2023 THPT Lương Ngọc Quyến – Thái Nguyên : + Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật 1 13 2 m/s 100 30 vt t trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng 2 a m/s (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng? + Cho vật thể đáy là hình tròn có bán kính bằng 1 (tham khảo hình vẽ). Khi cắt vật thể bằng mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x x 1 1 thì được thiết diện là một tam giác đều. Thể tích V của vật thể đó là? + Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh 1 8 2 I và trục đối xứng song song với trục tung như hình bên. Quãng đường s người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kỳ 2 Toán 12 năm 2020 - 2021 trường THPT Nguyễn Du - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giữa kỳ 2 Toán 12 năm học 2020 – 2021 trường THPT Nguyễn Du, quận 10, thành phố Hồ Chí Minh; đề thi gồm 03 trang với 25 câu trắc nghiệm, thời gian làm bài 40 phút, đề thi có đáp án mã đề 301. Đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Du – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho điểm I (1;0;−2) và mặt phẳng (P) có phương trình: x + 2y − 2z + 4 = 0. Phương trình mặt cầu (S) có tâm I và tiếp xúc với (P) là: A (x + 1)2 + y2 + (z − 2)2 = 3. B (x − 1)2 + y2 + (z + 2)2 = 9. C (x − 1)2 + y2 + (z + 2)2 = 3. D (x + 1)2 + y2 + (z − 2)2 = 9. + Cho phần vật thể B giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = π/3. Cắt phần vật thể B bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ π/3) ta được thiết diện là một tam giác vuông có độ dài hai cạnh góc vuông lần lượt là 2x và cos x. Thể tích vật thể B bằng? + Cho hàm số f(x) liên tục trên đoạn [0;10]. Tính P?
Đề thi giữa kỳ 2 Toán 12 năm 2020 - 2021 trường THPT Việt Yên 1 - Bắc Giang
Đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Việt Yên 1 – Bắc Giang mã đề 121 gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Việt Yên 1 – Bắc Giang : + Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) liên tục trên đoạn [a;b] trục hoành và hai đường thẳng x = a, x = b được tính theo công thức? + Trong không gian Oxyz, cho ba điểm A, B, C. Viết phương trình mặt phẳng (P) biết (P) đi qua ba điểm A, B, C. + Tính diện tích xung quanh của hình trụ biết hình trụ có bán kính đáy là a và đường cao là a3.
Đề thi giữa học kỳ 2 Toán 12 năm 2020 - 2021 trường THPT Ngô Gia Tự - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giữa học kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk; đề được biên soạn theo hình thức đề trắc nghiệm khách quan 100% với 32 câu hỏi và bài toán, thời gian làm bài 60 phút, đề thi có đáp án mã đề 001, 002, 003, 004. Trích dẫn đề thi giữa học kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian với hệ tọa độ Oxyz cho tứ diện đều ABCD với điểm A(13;-8;10) và hình chiếu vuông góc của A lên mặt phẳng (BCD) là H(-3;0;2). Phương trình mặt cầu ngoại tiếp tứ diện ABCD là? + Trong không gian với hệ tọa độ Oxyz cho ba điểm A(2;0;0), B(0;4;0), C(0;0;6). Mặt cầu (S) là mặt cầu ngoại tiếp tứ diện ABCD. Phương trình mặt phẳng (P) tiếp xúc mặt cầu (S) tại điểm A là? + Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và B(-1;4;2). Gọi điểm C thuộc mặt phẳng (Oxy) sao cho ba điểm A, B, C thẳng hàng. Phương trình mặt phẳng trung trực đoạn AC là?
Đề thi giữa kỳ 2 Toán 12 năm 2020 - 2021 trường THPT Sầm Sơn - Thanh Hóa
Vừa qua, trường THPT Sầm Sơn, thành phố Sầm Sơn, tỉnh Thanh Hóa tổ chức kỳ thi kiểm tra chất lượng giữa kỳ 2 môn Toán 12 năm học 2020 – 2021. Đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa được biên soạn theo hình thức đề trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết VD – VDC. Trích dẫn đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa : + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT Sầm Sơn, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD, phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)? + Cho hình trụ có chiều cao bằng 6 cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A’B’ mà AB = A’B’ = 6cm, diện tích tứ giác ABB’A’ bằng 60cm2. Tính bán kính đáy của hình trụ. + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y + 2)2 + (z – 3)2 = 12 và mặt phẳng (P): 2x + 2y – z – 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q) là?