Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn
Nội dung Chuyên đề góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn Bản PDF - Nội dung bài viết Chuyên đề về góc có đỉnh ở bên trong và bên ngoài đường tròn Chuyên đề về góc có đỉnh ở bên trong và bên ngoài đường tròn Tài liệu này bao gồm 39 trang, được soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức quan trọng về chuyên đề góc có đỉnh ở bên trong và bên ngoài đường tròn. Tài liệu cung cấp phân loại, hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm trong chương trình Hình học lớp 9, chương 3 bài số 5. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. II. CÁC DẠNG BÀI MINH HỌA Dạng 1: Chứng minh hai góc hoặc hai đoạn thẳng bằng nhau. Phương pháp giải: Sử dụng hai định lý về số đo của góc có đỉnh bên trong đường tròn và góc có đỉnh bên ngoài đường tròn. Dạng 2: Chứng minh hai đường thẳng song song hoặc vuông góc bằng cách chứng minh các đẳng thức cho trước và áp dụng hai định lý về số đo của góc có đỉnh bên trong và bên ngoài đường tròn. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN Đây là tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc có đỉnh ở bên trong và bên ngoài đường tròn, từ đó nâng cao khả năng giải bài tập và phát triển tư duy logic trong quá trình học tập.
Chuyên đề góc nội tiếp
Nội dung Chuyên đề góc nội tiếp Bản PDF - Nội dung bài viết Chuyên đề góc nội tiếp: Tài liệu học tập hình học 9 Chuyên đề góc nội tiếp: Tài liệu học tập hình học 9 Tài liệu này bao gồm 51 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức quan trọng về chuyên đề góc nội tiếp và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 3. A. Kiến thức trọng tâm Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh của góc là hai dây cung trên đường tròn. Cung bị chắn nằm trong đường tròn. Một tính chất quan trọng là số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn. Trong một đường tròn, các góc nội tiếp bằng nhau thì chắn các cung bằng nhau, và các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. Góc nội tiếp nhỏ hơn hoặc bằng 90° có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. Góc nội tiếp chắn nửa đường tròn là góc vuông. B. Các dạng bài minh họa 1. Chứng minh hai góc bằng nhau và tính số đo của góc. 2. Tính độ dài và diện tích trong các bài toán. 3. Chứng minh ba điểm thẳng hàng dựa vào hệ quả của góc nội tiếp. 4. Chứng minh hai đường thẳng vuông góc dựa vào định lí và tính chất góc nội tiếp. 5. Nâng cao phát triển tư duy trong việc giải các bài toán. C. Trắc nghiệm rèn luyện phản xạ và bài tập tự luyện Ngoài các dạng bài minh họa, tài liệu còn cung cấp các câu hỏi trắc nghiệm để rèn luyện kiến thức và kỹ năng giải bài toán của học sinh. Bài tập tự luyện giúp học sinh tự mình nắm vững kiến thức và cải thiện khả năng giải bài toán.
Chuyên đề liên hệ giữa cung và dây
Nội dung Chuyên đề liên hệ giữa cung và dây Bản PDF - Nội dung bài viết Chuyên đề liên hệ giữa cung và dây Chuyên đề liên hệ giữa cung và dây Tài liệu này bao gồm 12 trang, đã được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm về chuyên đề liên hệ giữa cung và dây. Đây là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 2. I. Tóm tắt lý thuyết 1. Định lí 1: Hai cung nhỏ trong cùng một đường tròn hoặc trong hai đường tròn bằng nhau, thì hai cung bằng nhau căng hai dây bằng nhau. 2. Định lí 2: Hai cung nhỏ trong cùng một đường tròn hoặc trong hai đường tròn bằng nhau, thì cung lớn hơn căng dây lớn hơn. 3. Bổ sung: Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. Đường kính đi qua trung điểm của một cung thì đi qua trung điểm của dây căng cung ấy. Đường kính cũng đảm bảo góc vuông giữa dây và cung. II. Bài tập minh họa Phương pháp giải: Để giải các bài toán liên quan đến cung và dây, cần hiểu rõ định nghĩa góc ở tâm và sự liên hệ giữa cung và dây. III. Bài tập tự luyện Tiếp tục làm các bài tập để củng cố kiến thức và kỹ năng giải quyết vấn đề liên quan đến chuyên đề liên hệ giữa cung và dây.
Chuyên đề góc ở tâm, số đo cung
Nội dung Chuyên đề góc ở tâm, số đo cung Bản PDF - Nội dung bài viết Chuyên Đề Góc Ở Tâm, Số Đo CungTóm Tắt Lý Thuyết:Bài Tập Minh Họa:Phiếu Bài Tự Luyện: Chuyên Đề Góc Ở Tâm, Số Đo Cung Tài liệu này gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề góc ở tâm, số đo cung. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. Tóm Tắt Lý Thuyết: Góc ở tâm Số đo cung So sánh hai cung Định lí Bài Tập Minh Họa: Phương pháp giải bài tập trong tài liệu này giúp học sinh tính số đo của góc ở tâm và số đo của cung bị chắn. Một số kiến thức quan trọng bao gồm: Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ Số đo của nửa đường tròn là 180 độ Cung cả đường tròn có số đo 360 độ Sử dụng tỉ số lượng giác của một góc để tính góc Sử dụng quan hệ đường kính và dây cung Phiếu Bài Tự Luyện: Tài liệu cung cấp phiếu bài tập tự luyện để học sinh tự kiểm tra và củng cố kiến thức sau khi học xong phần lý thuyết và bài tập minh họa.