Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề định lí đảo và hệ quả của định lí Ta-lét

Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí đảo và hệ quả của định lí Ta-lét, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ 1. Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. 2. Hệ quả của định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tỉ lệ với ba cạnh của tam giác đã cho. II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. Chia đoạn thẳng cho trước thành các phần bằng nhau. 1. Tính độ dài đoạn thẳng: + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Thay số vào hệ thức rồi giải phương trình. 2. Chia đoạn thẳng cho trước thành các phần bằng nhau cách sử dụng hệ quả của định lí Ta-lét hoặc tính chất của đường thẳng song song cách đều. DẠNG 2. Chứng minh hệ thức hình học. + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Sử dụng các tính chất của tỉ lệ thức hoặc cộng hay nhân theo vế các đẳng thức hình học. DẠNG 3. Chứng minh hai đường thẳng song song. + Sử dụng định lí Ta-lét, lập tỉ lệ thức giữa các đoạn thẳng. + Áp dụng định lí Ta-lét đảo, kết luận hai đường thẳng song song. DẠNG 4. Vẽ thêm đường thẳng song song để chứng minh hệ thức hình học, tính tỉ số hai đoạn thẳng. + Vẽ thêm đường thẳng song song. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức giữa các đoạn thẳng. + Biến đổi tỉ lệ thức. B. DẠNG BÀI NÂNG CAO TỔNG HỢP TALET VÀ LIÊN QUAN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích đa giác
Nội dung Chuyên đề diện tích đa giác Bản PDF - Nội dung bài viết Chuyên đề diện tích đa giácTóm tắt lý thuyết:Bài tập và các dạng toán:A. Các dạng bài minh họa:B. Phiếu bài tự luyện: Chuyên đề diện tích đa giác Tài liệu này bao gồm 06 trang, cung cấp lý thuyết cơ bản về cách tính diện tích đa giác, bao gồm trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán phổ biến. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề diện tích đa giác, kèm theo đáp án và lời giải chi tiết. Đây là tài liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết: Để tính diện tích đa giác, chúng ta thường chia đa giác đó thành các tam giác hoặc tứ giác để tính toán. Sau đó, tính tổng các diện tích tam giác hoặc tứ giác đó để có diện tích của đa giác ban đầu. Hoặc có thể tạo ra một đa giác mới chứa đa giác ban đầu và tính hiệu các diện tích để đạt được kết quả cuối cùng. Bài tập và các dạng toán: A. Các dạng bài minh họa: Dạng 1: Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2: Tính diện tích của đa giác bất kỳ. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3: Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. Phiếu bài tự luyện: Bên cạnh đó, tài liệu cũng cung cấp phiếu bài tự luyện cho học sinh, giúp họ ôn tập và rèn luyện kỹ năng tính toán diện tích đa giác một cách hiệu quả.
Chuyên đề diện tích hình thoi
Nội dung Chuyên đề diện tích hình thoi Bản PDF - Nội dung bài viết Một bộ tài liệu chuyên về diện tích hình thoi Một bộ tài liệu chuyên về diện tích hình thoi Tài liệu này bao gồm 14 trang chứa thông tin chi tiết về diện tích hình thoi, được chia thành ba phần chính. Phần I: Kiến thức cơ bản Trong phần này, bạn sẽ được học về cách tính diện tích của tứ giác có hai đường chéo vuông góc và diện tích hình thoi. Đặc biệt, bạn sẽ biết rằng diện tích hình thoi có thể tính bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. Phần II: Một số dạng bài tập Trong phần này, bạn sẽ được hướng dẫn cách giải các dạng bài tập phổ biến như tính diện tích của tứ giác có hai đường chéo vuông góc và tính diện tích hình thoi. Bạn cũng sẽ tìm hiểu cách tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phần III: Phiếu bài tự luyện Phần cuối cùng cung cấp cho bạn một phiếu bài tập tự luyện để thực hành và kiểm tra kiến thức của mình. Đáp án và lời giải chi tiết sẽ giúp bạn hiểu rõ hơn và nâng cao kỹ năng giải bài tập về diện tích hình thoi.
Chuyên đề diện tích hình thang
Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.
Chuyên đề diện tích tam giác
Nội dung Chuyên đề diện tích tam giác Bản PDF - Nội dung bài viết Chuyên đề diện tích tam giácTóm tắt lý thuyếtBài tập và các dạng toánPhiếu bài tự luyện Chuyên đề diện tích tam giác Tài liệu này bao gồm 11 trang, cung cấp kiến thức về diện tích tam giác cần đạt, phân loại và hướng dẫn giải các dạng bài tập liên quan đến chuyên đề này. Nội dung tài liệu được tóm tắt từ lý thuyết về trọng tâm tam giác, cách tính diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết Diện tích tam giác có thể tính bằng nửa tích của một cạnh nhân với chiều cao tương ứng. Tài liệu cũng chú ý đến tỉ số diện tích của hai tam giác khi có một cạnh hoặc một đường cao bằng nhau. Bài tập và các dạng toán Tài liệu cung cấp các dạng bài tập minh họa như: Tính toán, chứng minh về diện tích tam giác; Sử dụng công thức tính diện tích để tìm độ dài đoạn thẳng; Chứng minh hệ thức về diện tích; Tìm vị trí điểm thỏa mãn đẳng thức về diện tích; Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải các dạng toán được hướng dẫn chi tiết, từ việc sử dụng công thức tính diện tích đến phát hiện mối quan hệ giữa các yếu tố trong tam giác. Điều này giúp học sinh nắm vững kiến thức và áp dụng linh hoạt trong giải các bài tập. Phiếu bài tự luyện Tài liệu cuối cùng cung cấp phiếu bài tập tự luyện để học sinh có thể kiểm tra kiến thức và rèn luyện kỹ năng giải bài tập liên quan đến diện tích tam giác. Đây là cơ hội cho học sinh tự kiểm tra và nâng cao khả năng giải bài toán trong chuyên đề này.