Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Nam Định

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Nam Định Bản PDF Đề thi học sinh giỏi Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Nam Định gồm 2 bài thi độc lập: Toán trắc nghiệm và Toán tự luận, bài thi Toán trắc nghiệm gồm 40 câu, thời gian làm bài 60 phút, bài thi Toán tự luận gồm 5 câu, thời gian làm bài 75 phút. Kỳ thi nhằm tuyển chọn những em học sinh khối 12 giỏi môn Toán để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác noi theo, đồng thời thành lập đội tuyển học sinh giỏi Toán lớp 12 tỉnh Nam Định tham dự kỳ thi HSG Toán lớp 12 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Nam Định : + Cho hai mặt phẳng (P), (Q) song song với nhau cắt khối cầu tâm O, bán kính R tạo thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn, đáy trùng với hình tròn còn lại. Tính khoảng cách giữa (P), (Q) để diện tích xung quanh của hình nón là lớn nhất. [ads] + Cho tập X = {1;2;3;…;8}. Gọi A là tập các số tự nhiên có 8 chữ số đôi một khác nhau được lập từ X. Lấy ngẫu nhiên một số từ tập A. Tính xác suất để số được lấy chia hết cho 2222. + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), đáy ABCD là hình thang vuông tại A và B, AD = 3BC = 3a, AB = a, SA = a√3. Gọi M là trung điểm SD và I thỏa mãn AD = 3AI. a) Tính thể tích của khối tứ diện CDIM. Tính góc giữa hai đường thẳng AM và SC. b) Gọi E, F lần lượt là hình chiếu của A trên các cạnh SB, SC và H là giao điểm của SI và AM. Tính thể tích của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG môn Toán năm 2022 - 2023 sở GDĐT Đắk Nông
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Cho phương trình ax3 + 27×2 + 12x + 2022 = 0 có 3 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực: 4 (ax3 + 27×2 + 12x + 2022)(3ax + 27) = (3ax2 + 54x + 12)2 với a khác 0. + Cho hai đường tròn (O1) và (O2) tiếp xúc trong tại M (đường tròn (O2) nằm trong). Hai điểm P và Q thuộc đường tròn (O2), qua P kẻ tiếp tuyến với (O2) cắt (O1) tại B và D, qua Q kẻ tiếp tuyến với (O2) cắt (O1) tại A và C. Chứng minh rằng tâm đường tròn nội tiếp các tam giác ACD, BCD nằm trên PQ. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định. Đường thẳng d đi qua I lần lượt cắt cạnh AB, AC tại M, N. Tìm vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GDĐT Long An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi THPT môn Toán cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Long An; kỳ thi được diễn ra vào ngày 15/10/2022 (vòng 1 – buổi thi thử nhất) và 16/10/2022 (vòng 2 – buổi thi thứ hai). Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Long An : + Cho hàm số f(x) = −x4 + 2mx2 − m2 − 1. Tìm tất cả các giá trị của tham số m để đồ thị hàm số có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn. + Một cơ thể người khi đứng bình thường được đánh dấu tại 11 vị trí: đầu, cổ, hai khuỷu tay, hai bàn tay, bụng, hai khuỷu chân, hai bàn chân và có thể mô hình theo sơ đồ “Hình 1” bên dưới. Tại mỗi vị trí đó, ta lần lượt viết một số từ tập hợp 11 số nguyên dương đầu tiên (không có hai số giống nhau được viết) sao cho hai số được nối nhau bởi một đoạn thẳng thì số lớn hơn được đặt ở vị trí cao hơn. Tìm số cách viết thỏa yêu cầu trên trong các trường hợp sau: a) Người đứng giơ cao hai tay được mô hình theo sơ đồ “Hình 2” bên dưới. b) Người đứng giơ thấp hai tay được mô hình theo sơ đồ “Hình 3” bên dưới. + Cho tập hợp A gồm 2n số nguyên dương đầu tiên với n ≥ 3. Tìm số nguyên dương k nhỏ nhất thỏa mãn tính chất sau: “Trong tập con B bất kì của A mà B có đúng k phần tử, ta luôn tìm được bốn phần tử phân biệt có tổng chia hết cho 4n + 1”.
Đề học sinh giỏi tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Quảng Nam (đợt 1)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam (đợt 1); kỳ thi được diễn ra vào ngày 07 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Nam (đợt 1) : + Cho đường tròn (O) và hai điểm A, B cố định nằm trên đường tròn (O) sao cho ba điểm O, A, B không thẳng hàng. Xét một điểm C trên đường tròn (O) sao cho tam giác ABC không cân tại C. Gọi (O1) là đường tròn đi qua A và tiếp xúc với BC tại C; (O2) là đường tròn đi qua B và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai là D (D khác C). a) Tiếp tuyến của đường tròn (O) tại C cắt đường thẳng OD tại S. Chứng minh OA là tiếp tuyến của đường tròn ngoại tiếp tam giác ADS. b) Chứng minh đường thẳng CD luôn đi qua một điểm cố định khi điểm C di động trên đường tròn (O) (tam giác ABC không cân tại C). + Cho tập hợp X có 2023 phần tử. Hỏi có tất cả bao nhiêu cách chọn hai tập hợp con khác nhau của X sao cho giao của hai tập hợp này là một tập hợp có đúng một phần tử? + Tìm tất cả các cặp số nguyên tố p và q thỏa mãn 2^p + 2^q chia hết cho p.q.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển của tỉnh dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra trong hai ngày: 06/10/2022 (ngày thi thứ nhất) và 07/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Tìm tất cả các đa thức P(x) hệ số thực, thỏa mãn: Nếu tồn tại các số thực a, b, c sao cho 7P(a) + 10P(b) + 2022P(c) = 0 thì 7a + 10b + 2022c = 0. + Cho tam giác ABC nội tiếp (O) cố định, BC cố định và điểm A thay đổi trên cung lớn BC sao cho tam giác ABC nhọn, không cân. Lấy điểm X trên đường thẳng AC và điểm Y trên đường thẳng AB sao cho BX, CY vuông góc BC, đường tròn (AXY) cắt (O) tại L khác A. a) Gọi AD là đường kính của (O). Chứng minh rằng đường thẳng DL luôn đi qua điểm cố định khi A thay đổi. b) Gọi P, Q lần lượt là giao điểm thứ hai của BX, CY với đường tròn(AXY). Chứng minh rằng giao điểm của PQ và tiếp tuyến tại A của đường tròn (AXY) luôn nằm trên một đường cố định. c) Chứng minh rằng tiếp tuyến tại A của đường tròn (AXY), tiếp tuyến tại L của (O) và đường thẳng BC đồng quy. + Có 2022 học sinh ngồi thành một vòng tròn. Ban đầu, một học sinh nào đó sẽ được đưa cho n đồng xu, n là số nguyên dương. Ở mỗi lượt, tất cả các học sinh hiện có ít nhất 2 đồng xu sẽ chuyển 2 đồng xu sang hai học sinh ngồi bên cạnh (mỗi người 1 đồng xu). a) Chứng minh rằng với n < 2022, quá trình này sẽ dừng sau hữu hạn lượt. b) Chứng minh rằng với n = 2022, quá trình này sẽ kéo dài vô hạn.