Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi lập đội tuyển chọn học sinh giỏi dự thi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra trong hai ngày 14/09/2023 và 15/09/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho tam giác ABC có trực tâm H nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T khác A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc với OH. b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). + Trên bàn có 99 tấm thẻ được đánh số từ 1 đến 4 và từ 6 đến 100. Hai bạn A và B luân phiên chơi trò chơi với luật như sau: i) A là người thực hiện lượt chơi đầu tiên. ii) Trong mỗi lượt chơi, người chơi nhặt ra khỏi bàn 2 tấm thẻ được đánh hai số nguyên liên tiếp nhau sao cho số bé hơn không chia hết cho 10 và giữ một tấm thẻ trên tay đồng thời bỏ đi tấm thẻ còn lại. iii) Khi tới lượt chơi của mình, nếu người chơi không thể thực hiện được yêu cầu ii hoặc chọn được hai tấm thẻ nhưng tổng số của một trong hai tấm thẻ đó với một tấm thẻ tuỳ ý trên tay hai người chơi đang giữ bằng 101 thì là người thua cuộc. Biết rằng hai người chơi có thể thấy được số ghi trên tất cả các tấm thẻ trên bàn và trong tay đối thủ. Hỏi ai là người có chiến thuật thắng. + Cho đa thức bậc hai P(x) thuộc R[x] thoả mãn P(x) > 0 với mọi x ≥ 0. Chứng minh rằng tồn tại số nguyên dương m sao cho (x + 1)^m.P(x) là đa thức với hệ số không âm.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi vòng tỉnh môn Toán THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ Ba ngày 09 tháng 03 năm 2021, sở Giáo dục và Đào tạo Tiền Giang tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề).
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán (thường) năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho hàm số y = x^2 + x + 2021,5 có đồ thị (P). Tìm tập hợp các điểm M trong mặt phẳng mà từ M có thể kẻ được hai tiếp tuyến vuông góc đến (P). + Cho hình nón đỉnh S có đáy là đường tròn (O). Trong hình nón, người ta đặt một hình chóp D.ABC có đáy ABC là tam giác cân tại A, nội tiếp đường tròn (O) và BAC = 120°. Đỉnh D nằm trên mặt xung quanh của hình nón, các mặt bên của hình chóp tạo với đáy một góc bằng nhau. a) Chứng minh D thuộc đường thẳng SA. b) Tính thể tích khối nón khi thể tích khối chóp bằng 3. + Cho X = {n thuộc Z | -5 =< n =< 5} và X là tập hợp các hàm số f(x) = ax4 + bx2 + c có a, b, c thuộc X và f(x) có 3 điểm cực trị. Chọn ngẫu nhiên f(x) từ X, tính xác suất để gốc tọa độ O nằm hoàn toàn trong tam giác tạo thành từ ba điểm cực trị của đồ thị f(x).
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bắc Giang
Thứ Bảy ngày 06 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề thi trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho hai mặt phẳng (P), (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P), (Q) khi diện tích xung quanh của hình nón lớn nhất là? + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 6cm, BC = BB’ = 2cm. Gọi E là trung điểm cạnh BC. Một tứ diện đều MNPQ có hai đỉnh M và N nằm trên đường thẳng EC’, hai đỉnh P và Q nằm trên đường thẳng đi qua điểm B và cắt đường thẳng AD tại điểm F. Độ dài đoạn thẳng A’F bằng? + Cho hàm số y = x3 – 3mx2 + 3(m2 – 1)x – m3 – m (với m là tham số) và điểm I(2;-2). Gọi S là tập hợp các giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị A, B sao cho tam giác IAB nội tiếp đường tròn có bán kính bằng √5. Tích các phần tử của tập S là?