Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi lập đội tuyển chọn học sinh giỏi dự thi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra trong hai ngày 14/09/2023 và 15/09/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho tam giác ABC có trực tâm H nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T khác A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc với OH. b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). + Trên bàn có 99 tấm thẻ được đánh số từ 1 đến 4 và từ 6 đến 100. Hai bạn A và B luân phiên chơi trò chơi với luật như sau: i) A là người thực hiện lượt chơi đầu tiên. ii) Trong mỗi lượt chơi, người chơi nhặt ra khỏi bàn 2 tấm thẻ được đánh hai số nguyên liên tiếp nhau sao cho số bé hơn không chia hết cho 10 và giữ một tấm thẻ trên tay đồng thời bỏ đi tấm thẻ còn lại. iii) Khi tới lượt chơi của mình, nếu người chơi không thể thực hiện được yêu cầu ii hoặc chọn được hai tấm thẻ nhưng tổng số của một trong hai tấm thẻ đó với một tấm thẻ tuỳ ý trên tay hai người chơi đang giữ bằng 101 thì là người thua cuộc. Biết rằng hai người chơi có thể thấy được số ghi trên tất cả các tấm thẻ trên bàn và trong tay đối thủ. Hỏi ai là người có chiến thuật thắng. + Cho đa thức bậc hai P(x) thuộc R[x] thoả mãn P(x) > 0 với mọi x ≥ 0. Chứng minh rằng tồn tại số nguyên dương m sao cho (x + 1)^m.P(x) là đa thức với hệ số không âm.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GDĐT Quảng Trị
Ngày … tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn đội tuyển học sinh giỏi văn hóa lớp 12 THPT dự thi Quốc gia môn Toán năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm hai vòng thi: đề thi vòng 1 gồm 04 câu, đề thi vòng 2 gồm 03 câu. Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Một bảng n x n (n >= 2) được chia thành các hình vuông đơn vị. Mỗi hình vuông đơn vị đó được tô màu đỏ hoặc màu xanh. Hỏi có bao nhiêu cách tô màu sao cho mỗi hình vuông 2 x 2 có đúng hai hình vuông được tô màu đỏ và hai hình vuông được tô màu xanh? + Cho tam giác ABC cân tại A. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho ED = EC. Gọi M là trung điểm DB, N là giao điểm của EM và BC. Chứng minh rằng góc DNB = góc DCA. + Cho tam giác ABC nhọn, không cân, nội tiếp (O). Các tiếp tuyến của (O) tại B và C cắt nhau tại D. Gọi M là trung điểm của BC, E là giao điểm của đường thẳng AC và BC, F (F khác A) là giao điểm thứ hai của (O) và đường tròn ngoại tiếp tam giác AME, N (N khác A) là giao điểm thứ hai của đường thẳng AM và (O). Chứng minh rằng đường thẳng FN đi qua trung điểm của MD.
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Hải Dương
Thứ Tư ngày 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2020 – 2021 sở GD&ĐT Hải Dương gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Kết thúc đợt Hội học chào mừng ngày Nhà giáo Việt Nam, lớp 12A có 10 bạn được trao thưởng trong đó có An và Bình. Phần thưởng để trao cho 10 bạn gồm 5 quyển sách Hóa, 7 quyển sách Toán, 8 quyển sách Tiếng Anh (trong đó các quyển sách cùng môn là giống nhau). Mỗi bạn sẽ được nhận 2 quyển sách khác loại. Tìm xác suất để An và Bình có phần thưởng giống nhau. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có B(-1;4). Gọi D, E(-1;2) lần lượt là chân đường cao kẻ từ A, B và M là trung điểm của đoạn thẳng AB. Biết I(-3/2;7/2) là tâm đường tròn ngoại tiếp tam giác DEM. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 120°. a) Tính thể tích khối chóp S.ABCD biết SA = SB = SC và khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 3a/4. b) Tính thể tích khối chóp S.ABC biết góc giữa hai mặt phẳng (ABC), (SBC) bằng 45° và tam giác SAB vuông cân tại A.
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bình Định
Thứ Năm ngày 22 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2020 – 2021 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các đa thức với hệ số thực p(x), q(x), r(x) thỏa mãn p(x) – q(x) = r(x).(√p(x) + √q(x)) với mọi số thực x. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA = SB = √2, SC = √7. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Mặt phẳng (P) thay đổi, đi qua I, cắt các tia SA, SB, SC lần lượt tại các điểm M, N, P. Tính giá trị nhỏ nhất của thể tích khối chóp S.MNP. + Cho tứ giác ABCD nội tiếp trong đường tròn (O;R). Giả sử các tia phân giác của góc BAD, góc đối đỉnh BCD cắt nhau tại I và đường tròn (I;r) tiếp xúc với các tia đối của các tia BA, DA, CB, CD. Chứng minh rằng: 1/(d + R)^2 + 1/(d – R)^2 = 1/r^2 (với d = OI).
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GDĐT Hà Nội
Vừa qua, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2020 – 2021; kỳ thi diễn ra vào các ngày 19/10/2020 (ngày thi thứ nhất) và 20/10/2020 (ngày thi thứ hai). Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC đồng quy tại điểm H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyến SX, SY tới đường tròn (O), với X, Y là các tiếp điểm. a) Chứng minh D, X và Y là ba điểm thẳng hàng. b) Gọi I là giao điểm của hai đường thẳng XY và EF. Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC. + Cho tam giác ABC cân tại A (góc BAC < 90°) và M là trung điểm của đoạn thẳng AB. Lấy điểm N thuộc đoạn thẳng CM sao cho CBN = ACM. a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AMN. b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AMN tại điểm thứ hai P. Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng NP đi qua trung điểm của đoạn thẳng MI.