Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp trường Toán 10 lần 2 năm 2022 - 2023 trường THPT Bình Sơn - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 lần 2 năm học 2022 – 2023 trường THPT Bình Sơn, tỉnh Vĩnh Phúc; đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề HSG cấp trường Toán 10 lần 2 năm 2022 – 2023 trường THPT Bình Sơn – Vĩnh Phúc : + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Nếu 235 thì 169 chia hết cho 13 B. Nếu 45 là số nguyên tố thì 5 6 C. Nếu 42 chia hết cho 5 thì 42 chia hết cho 7 D. Nếu 5 2 1 là số nguyên tố thì 12 là ƯCLN của hai số 4 và 6. Cho các mệnh đề. A. Nếu ∆ABC đều có cạnh bằng a, đường cao là h thì 3 2 a h B. Tứ giác có bốn cạnh bằng nhau là hình vuông C. 15 là số nguyên tố D. 225 là một số nguyên. Hãy cho biết trong các mệnh đề sau mệnh đề nào đúng? + Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin Avà không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng. A. 600 đơn vị Vitamin A, 400 đơn vị Vitamin B. B. 600 đơn vị Vitamin A, 300 đơn vị Vitamin B. C. 500 đơn vị Vitamin A, 500 đơn vị Vitamin B. D. 100 đơn vị Vitamin A, 300 đơn vị Vitamin B. + Một cầu treo có dây truyền đỡ là Parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A B trên mỗi trục AA và BB với độ cao 30 m. Chiều dài đoạn A B trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là CC = 5 m. Gọi QPHCIJK là các điểm chia đoạn A B thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền QQ PP HH CC II JJ KK gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Bạn Mai có ba lọ dung dịch chứa một loại acid. Dung dịch A chứa 10%, dung dịch B chứa 30% và dung dịch C chứa 50%. Bạn Mai lấy từ mỗi lọ dung dịch và hòa với nhau để có 50g hỗn hợp chứa 32% acid này và lượng dung dịch loại C lấy nhiều gấp đôi dung dịch loại A. Tính lượng dung dịch mỗi loại bạn Mai đã lấy. + Cho tứ giác lồi ABCD có AC BD và nội tiếp đường tròn tâm O bán kính R 1. Đặt diện tích tứ giác ABCD bằng S và AB a BC b CD c DA d. Tính giá trị biểu thức ab cd ad bc T S.
Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Yên Phong 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Yên Phong số 2, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 06 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác DEF có E(−1; 0), F(3; 0). Gọi H, K lần lượt là trung điểm các cạnh DE, DF. Tìm tọa độ đỉnh D biết rằng D có tọa độ nguyên (hoành độ và tung độ là số nguyên), đồng thời hai đường trung tuyến EK, FH vuông góc với nhau. + Trong mặt phẳng tọa độ Oxy, cho hai parabol (P1) : y = f(x) = −x2 + 2x, (P2) : y = g(x) = ax2 + bx + c với a, b, c là các hằng số, a khác 0. Biết rằng (P2) đi qua ba điểm M1(1; 5), M2(2; 12), M3(−1; −3). a) Xác định các hệ số a, b, c. b) Vẽ hai parabol (P1), (P2) trên cùng một mặt phẳng tọa độ. c) Tìm m để phương trình (f(x) − m).(g(x) − m) = 0 có 4 nghiệm thực phân biệt. + Cho tam giác ABC. Lấy các điểm M, N, P, Q sao cho BM = 1 4 BC, AN = 2 3 AB, AP = 1 2 AM, AQ = 2 7 AC. a) Hãy biểu diễn NP theo AB và AC b) Chứng minh ba điểm N, P, Q thẳng hàng.
Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Quách Văn Phẩm - Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề tuyển chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 trường THPT Quách Văn Phẩm, tỉnh Cà Mau; đề gồm 08 bài toán hình thức tự luận, thời gian làm bài 180 phút.
Đề HSG Toán 10 lần 14 năm 2023 hội các trường THPT chuyên DHĐB Bắc Bộ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 lần thứ 14 (XIV) năm 2023 hội các trường THPT chuyên vùng Duyên hải và Đồng bằng Bắc Bộ; kỳ thi được diễn ra vào ngày 15 tháng 07 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 10 lần 14 năm 2023 hội các trường THPT chuyên DH&ĐB Bắc Bộ : + Cho tam giác nhọn ABC nội tiếp đường tròn O có AD là đường phân giác trong (D thuộc BC). Gọi E F lần lượt là điểm chính giữa cung CA chứa B, cung AB chứa C của đường tròn O. Đường tròn ngoại tiếp tam giác BDE cắt AB tại M. Đường tròn ngoại tiếp tam giác CDF cắt AC tại N. a) Chứng minh rằng bốn điểm BM NC cùng nằm trên một đường tròn. b) Gọi I là tâm đường tròn ngoại tiếp tam giác AMN. Gọi AP AQ lần lượt là đường kính của đường tròn ngoại tiếp tam giác ABN ACM. Chứng minh rằng các đường thẳng BQ CP AI đồng quy. + Cho số nguyên dương n. Chứng minh rằng nếu tồn tại các số nguyên dương abc sao cho 2027 n a bc b ac thì n là số chẵn. + Một số nguyên dương m được gọi là “tốt” nếu tồn tại các số nguyên dương abcd sao cho mabcdm 49 và ad bc. a) Chứng minh rằng số nguyên dương m là “tốt” khi và chỉ khi tồn tại hai số nguyên dương x y sao cho xy m và (xy m 1 1 49). b) Tìm số “tốt” lớn nhất.