Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 1 (HK1) lớp 9 môn Toán năm 2018 2019 trường chuyên Trần Đại Nghĩa TP. HCM

Nội dung Đề kiểm tra giữa học kì 1 (HK1) lớp 9 môn Toán năm 2018 2019 trường chuyên Trần Đại Nghĩa TP. HCM Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kỳ 1 Toán lớp 9 năm 2018 – 2019 trường chuyên Trần Đại Nghĩa – TP. HCM Đề kiểm tra giữa học kỳ 1 Toán lớp 9 năm 2018 – 2019 trường chuyên Trần Đại Nghĩa – TP. HCM Đề kiểm tra giữa học kỳ 1 môn Toán lớp 9 năm học 2018 – 2019 tại trường chuyên Trần Đại Nghĩa, mã đề A, được thực hiện để đánh giá chất lượng dạy và học Toán của giáo viên và học sinh. Kỳ thi diễn ra vào ngày 10/10/2018, bao gồm 1 trang đề với 6 bài toán tự luận. Học sinh được 90 phút để hoàn thành đề thi này. Cụ thể, đề thi có nội dung sau: 1. Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH và trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Bài toán yêu cầu chứng minh tứ giác ABDC là hình chữ nhật và CD = BH.BC. Sau đó, chứng minh rằng: BH.BC = BP.BQ và hai tam giác BAP, BQA đồng dạng. Cuối cùng, tính diện tích tứ giác ABQC khi đã biết AB = 3cm, AC = 4cm. 2. Một chiếc ti vi hình chữ nhật màn hình phẳng 75 inch (đường chéo ti vi dài 75 inch) có góc tạo bởi chiều dài và đường chéo là 36°52'. Yêu cầu tính chiều dài và chiều rộng của chiếc ti vi khi biết rằng 1 inch = 2,54 cm, và kết quả tính được làm tròn đến chữ số thập phân thứ nhất. Đề kiểm tra này không chỉ giúp học sinh vận dụng kiến thức Toán mà còn khuyến khích sự logic, sáng tạo và khả năng giải quyết vấn đề của học sinh. Hy vọng rằng đề thi sẽ giúp họ phát triển năng khiếu Toán học và chuẩn bị tốt cho kì thi cuối kỳ sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Thanh Xuân, Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Cho biểu thức a) Tính giá trị của A khi 1 9 a b) Rút gọn B c) Tìm giá trị nguyên của a để B nhận giá trị nguyên. + Tính giá trị biểu thức. + Cho hình bình hành ABCD có 90 A α. Gọi I K lần lượt là hình chiếu của B′, D′ trên đường chéo AC. Gọi M N lần lượt là hình chiếu của C′ trên các đường thẳng A B. a) Chứng minh rằng: Tam giác BCM đồng dạng với tam giác DCN b) Chứng minh rằng: Tam giác CMN đồng dạng với tam giác BCA. Từ đó suy ra MN A C sinα c) Tính diện tích tứ giác ANCM biết BC 6 cm AB 4 cm và α 60. d) Chứng minh: 2 AC AD AN AB AM.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS thị trấn Văn Điển - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS thị trấn Văn Điển, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội : + Với x ≥ 0 và x ≠ 25 cho hai biểu thức. a) Tính A với x = 9. b) Chứng minh biểu thức 5Bx. c) Cho 3BPA. Tìm x nguyên để P có giá trị là một số nguyên. + Cho tam giác ABC vuông tại A, AB = 3 cm, AC = 4 cm. a) Giải tam giác ABC. b) Gọi I là trung điểm của BC vẽ AH BC. Tính AH AI. c) Qua A kẻ đường thẳng xy vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh: 2 4 BC MB NC. d) Gọi K là trung điểm của AH. Chứng minh BKN thẳng hàng. + Giải phương trình: 2x.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Vạn Phúc - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Vạn Phúc, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội : + Ở một thời điểm trong ngày, một cột cờ cao 11m có bóng trên mặt đất dài 6m. Hỏi góc giữa tia sáng mặt trời và bóng cột cờ là bao nhiêu? (làm tròn đến phút). + Cho hình chữ nhật ABCD có AB BC 9cm 12cm. Kẻ AH vuông góc với BD tại H. a) Tính BD AH và số đo góc ABD? b) Kẻ HI vuông góc với AB. Chứng minh AI AB DH HB. c) Đường thẳng AH cắt BC tại M và cắt DC tại N. Chứng minh 2 HA HM HN (làm tròn kết quả độ dài đến chữ số thập phân thứ 3 số đo góc đến độ). + Tìm x y thỏa mãn phương trình.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Tứ Hiệp - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Tứ Hiệp, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Tứ Hiệp – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Tứ Hiệp – Hà Nội : + Tháp Pisa ở Ý là một trong những địa điểm du lịch rất nổi tiếng. Năm 2019 tòa tháp trong 864 tuổi và người ta đo được độ nghiêng của tháp so với phương thẳng đứng là 358. Khi thả một quả cầu bằng đá rơi theo phương thẳng đứng từ đỉnh tháp (bỏ qua lực cản không khí, gió), người ta đo được điểm rơi cách chân tháp 3,92 m. Tính khoảng cách từ đỉnh tháp đến mặt đất? (Làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC vuông tại A đường cao AH. Biết AB AC 3cm 4cm. 1) Tính độ dài BC AH CH BH. 2) Gọi M là trung điểm của BC. Kẻ BE AM tại E. BE cắt AH tại D BE cắt AC tại F. Chứng minh BE BF BH BC. 3) Chứng minh AB BH AC CH và D là trung điểm của BF. + Giải phương trình.