Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hải Phòng

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Phòng Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Phòng Chào mừng quý thầy cô giáo và các em học sinh! Sau đây là nội dung chính thức của đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023-2024 của sở Giáo dục và Đào tạo thành phố Hải Phòng. Kỳ thi sẽ được diễn ra vào ngày 05/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Phòng: Chứng minh nếu a là số chính phương thì phương trình đã cho có hai nghiệm cũng là những số chính phương. Chứng minh rằng tam giác ABC và tam giác HAC đồng dạng và hai đường thẳng BC, EF là song song với nhau. Khi điểm P nằm trên đoạn thẳng OT, chúng ta cần chứng minh rằng hai đường thẳng BC, EF là song song với nhau. Sau đó, khám phá sự tương quan giữa các điểm U, Q, M, N để chứng minh OAH = KAQ và tính chất của đường tròn ngoại tiếp tam giác AMN. Trong một đường tròn có 8 điểm phân biệt, chúng ta cần chứng minh được tồn tại 4 dây cung không chung điểm nhau sao cho tổng các giá trị tuyệt đối của hiệu các số gán trên đầu mút của mỗi dây cung đó là 16. Đề thi mang đến những thách thức và cơ hội cho các em hoàn thiện kiến thức và kỹ năng Toán của mình. Chúc các em học sinh thi tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Tin) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho hai phương trình: x2 − bx + 4c = 0 (1); x2 – b2x – 4bc = 0 (2) (trong đó x là ẩn, b và c là các tham số). Biết phương trình (1) có hai nghiệm x1 và x2, phương trình (2) có hai nghiệm x3 và x4 thỏa mãn điều kiện x3 − x1 = x4 − x2 = 1. Xác định b và c. + Cho tập hợp X chứa đúng 501 số nguyên dương bất kỳ thỏa mãn mỗi số đó nhỏ hơn hoặc bằng 1000. Chứng minh rằng trong X có ít nhất một số chia hết cho một số khác. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của đoạn AH. a. Chứng minh tứ giác BDHF nội tiếp đường tròn. b. Chứng minh AF.AB = AH.AD. c. Gọi O là trung điểm của cạnh BC, chứng minh ME vuông góc với EO. d. Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DJI = DEB.
Bộ đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán
Tài liệu gồm 177 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 20 đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán; các đề được biên soạn theo hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian phát đề.
Đề khảo sát Toán (Tin) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (Tin) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi dùng cho thí sinh thi vào lớp 10 chuyên Tin học; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (Tin) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho ba điểm A B C cố định nằm trên một đường thẳng d (B nằm giữa A và C). Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không thuộc đường thẳng d). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O (M, N là các tiếp điểm và N thuộc cung nhỏ BC). Đường thẳng AO cắt MN tại điểm H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và Q). Gọi I là trung điểm của BC. + Cho 2023 hình chữ nhật có chiều rộng bằng 1 cm và chiều dài lần lượt bằng 1 x cm 2 x cm 2023 x cm. Biết rằng 1 2 2023 x x là các số nguyên dương khác 1 thỏa mãn điều kiện 1 2 2023 1 1 1 … 88 x. Chứng minh rằng trong 2023 hình chữ nhật này có ít nhất hai hình chữ nhật có diện tích bằng nhau. + Cho hai số thực a b phân biệt thỏa mãn 2 2 a a b b c 2023 2023 với c là một số thực dương. Chứng minh rằng 1 1 2023 0 a b c.
Đề khảo sát Toán (chuyên) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (chuyên) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho các số thực dương x y thỏa mãn 2 x xy 3 10 và 2 y xy 6. Tính A x y 3. + Cho tam giác ABC nhọn có AB AC nội tiếp đường tròn O. Phân giác trong của BAC cắt BC tại D và cắt O tại Q Q A. Từ D dựng DE DF lần lượt vuông góc với AC AB E AC F AB. Gọi M là trung điểm của BC, tia QM cắt O tại giao điểm thứ hai là P. a) Chứng minh QM QP QD QA. b) Gọi N là giao điểm của PD và EF. Chứng minh MN song song với AD. c) Dựng đường kính AK của O. Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm R R N. Chứng minh các điểm P D R thẳng hàng. + Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu.