Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Đắk Nông

Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông Đề tuyển sinh môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 - 2023 của sở GD&ĐT Đắk Nông. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông: + Giải bài toán sau bằng cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 50 người. Vì thế, việc xét nghiệm hoàn thành sớm hơn kế hoạch 1 giờ. Hỏi theo kế hoạch, mỗi giờ thành phố Gia Nghĩa xét nghiệm được bao nhiêu người? + Cho nửa đường tròn đường kính AD. Lấy điểm B thuộc nửa đường tròn (B khác A và D), trên cung BD lấy điểm C (C khác B và D). Hai dây AC và BD cắt nhau tại điểm E. Kẻ đoạn thẳng EF vuông góc với AD (F thuộc AD). a) Chứng minh tứ giác ABEF nội tiếp. b) Chứng minh AE.AC = AF.AD. c) Chứng minh E là tâm đường tròn nội tiếp tam giác BFC. + Cho 4044 2022 2022 4x 9x 6 P x 2. Tìm giá trị của x để biểu thức P đạt giá trị nhỏ nhất.

Nguồn: sytu.vn

Đọc Sách

Tuyển tập đề thi tuyển sinh môn Toán sở GD ĐT Quảng Bình (2013 2024)
Nội dung Tuyển tập đề thi tuyển sinh môn Toán sở GD ĐT Quảng Bình (2013 2024) Bản PDF - Nội dung bài viết Tuyển tập đề thi Toán sở GD ĐT Quảng Bình (2013-2024) Tuyển tập đề thi Toán sở GD ĐT Quảng Bình (2013-2024) Tài liệu tuyển tập đề thi Toán sở GD ĐT Quảng Bình (2013-2024) gồm 44 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu. Tài liệu này bao gồm các đề thi tuyển sinh vào lớp 10 môn Toán của Sở Giáo dục và Đào tạo tỉnh Quảng Bình từ năm 2013 đến năm 2024. Mỗi đề thi đi kèm đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng Toán của mình. Mục lục của tài liệu được chia thành hai phần chính. Phần I là các đề thi tuyển sinh từ năm 2012 đến năm 2024, mỗi năm đều có một đề thi cụ thể. Phần II là phần lời giải, cung cấp đầy đủ giải pháp cho từng câu hỏi trong đề thi. Điều này giúp học sinh hiểu rõ cách giải các bài tập và áp dụng vào thực hành một cách hiệu quả. Với tài liệu này, học sinh không chỉ có cơ hội ôn tập kiến thức môn Toán mà còn nắm vững cấu trúc đề thi tuyển sinh của Sở GD ĐT Quảng Bình. Đồng thời, cũng giúp giáo viên và phụ huynh có thêm tài liệu tham khảo để hỗ trợ học sinh trong quá trình học tập và ôn luyện.
Đề thi vào 10 môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Gia Lai
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Gia Lai Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2023-2024 trường chuyên Hùng Vương Gia Lai Đề thi vào 10 môn Toán (chuyên) năm 2023-2024 trường chuyên Hùng Vương Gia Lai Xin chào quý thầy, cô giáo và các em học sinh! Dưới đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023-2024 của trường THPT chuyên Hùng Vương, tỉnh Gia Lai. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023-2024 trường chuyên Hùng Vương - Gia Lai: Cho phương trình \( m \) là tham số. Tìm \( m \) để phương trình có hai nghiệm phân biệt thỏa mãn: \( x_1^2 + x_2^2 = 16 \). Bạn Tuấn lập kế hoạch tiết kiệm tiền để mua một cái laptop phục vụ cho việc học tập như sau: Hằng tháng, Tuấn tiết kiệm các khoản chi tiêu cá nhân để dành ra một triệu đồng. Vào ngày 01 hằng tháng, Tuấn gửi vào tài khoản tiết kiệm của mình một triệu đồng và bắt đầu gửi vào ngày 01 tháng 7 năm 2023 để h
Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp
Nội dung Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Đề thi sẽ diễn ra vào thứ Bảy, ngày 10 tháng 06 năm 2023. Trong đề thi, có ba bài toán khó đều đang chờ các bạn. Ví dụ, trong bài toán thứ nhất, bạn sẽ phải tính khoảng cách từ điểm N đến đoạn thẳng BC trên tờ giấy hình tam giác ABC vuông tại A. Đây là một bài toán đòi hỏi sự logic và kỹ năng tính toán chính xác. Bài toán thứ hai đề cập đến tam giác ABC nhọn và việc chứng minh các điểm trên đường thẳng AH và EF. Bạn sẽ phải chứng minh nội tiếp tứ giác AIJE và tính toán vị trí của các điểm trên đường thẳng BC. Đây là một bài toán phức tạp và đòi hỏi sự tư duy logic và khả năng suy luận tốt. Cuối cùng, bài toán thứ ba liên quan đến việc mua thẻ tại Phiên chợ hè Lotus. Bạn sẽ phải tính toán số cách mua thẻ giá 3000 đồng và 4000 đồng nếu có một số tiền nhất định. Đây là một bài toán áp dụng kiến thức toán học vào thực tế và yêu cầu khả năng áp dụng kiến thức vào vấn đề cụ thể. Như vậy, đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Đồng Tháp sẽ là một thách thức lớn đối với các thí sinh. Hy vọng rằng các em sẽ rèn luyện và chuẩn bị kỹ lưỡng để đạt kết quả tốt nhất trong kỳ thi sắp tới.
Đề thi vào môn Toán năm 2023 2024 trường chuyên Phan Bội Châu Nghệ An
Nội dung Đề thi vào môn Toán năm 2023 2024 trường chuyên Phan Bội Châu Nghệ An Bản PDF - Nội dung bài viết Đề thi vào môn Toán năm 2023-2024 trường chuyên Phan Bội Châu Nghệ An Đề thi vào môn Toán năm 2023-2024 trường chuyên Phan Bội Châu Nghệ An Trong đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 của trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An, có những câu hỏi khá thú vị và đòi hỏi sự tư duy logic và kiến thức sâu rộng. Câu hỏi đầu tiên yêu cầu tìm số nguyên dương a nhỏ nhất sao cho 2a là số lập phương và 5a là số chính phương, đòi hỏi học sinh phải biết cách giải phương trình để tìm ra kết quả chính xác. Câu hỏi tiếp theo liên quan đến tam giác vuông nội tiếp đường tròn, yêu cầu học sinh phải áp dụng kiến thức về góc trong tam giác và quan hệ hình học giữa các phần tử trong tam giác vuông. Ngoài ra, đề còn đưa ra câu hỏi về việc chứng minh các điểm nằm trên một đường tròn, cắt nhau tạo ra các hình học đặc biệt như tam giác chia tỉ lệ, hình chiếu vuông góc và phép biến đổi hình học. Cuối cùng, câu hỏi về đa giác lồi và tam giác trong đa giác yêu cầu học sinh phải sử dụng kiến thức về diện tích và khả năng chứng minh về tính chất hình học của các hình khác nhau. Tổng thể, đề thi này không chỉ đánh giá khả năng giải các bài toán mà còn đánh giá khả năng suy luận logic và khả năng áp dụng kiến thức vào việc giải quyết vấn đề hình học phức tạp.