Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 - 2021)

Tài liệu gồm 880 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2020 – 2021, có đáp án và lời giải chi tiết; tài liệu giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3. D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4. D01 – 1.1 Quy tắc cộng – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 2. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 1. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 2. D03 – 2.3 Bài toán chỉ sử dụng tổ hợp – Mức độ 1. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 2. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 2. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 4. D03 – 5.3 Tính xác suất bằng công thức cộng – Mức độ 3. D04 – 5.4 Tính xác suất bằng công thức nhân – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 3.3 Tìm hạng tử trong cấp số cộng – Mức độ 1. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 4.3 Tìm hạng tử trong cấp số nhân – Mức độ 1. D02 – 1.2 Dãy số có giới hạn 0 – Mức độ 1. D03 – 1.3 Giới hạn của dãy phân thức hữu tỷ – Mức độ 1. D07 – 2.7 Dạng vô cùng chia vô cùng – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về tính đơn điệu – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 2. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 1. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 3. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D05 – 1.5 Tìm khoảng đơn điệu của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 2. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 4. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 3. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 4. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 1. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 2. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 3. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 1. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 2. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 4. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 3. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 4. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 1. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 2. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 3. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 2. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 3. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 4. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 3. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 4. D10 – 2.10 Tìm m để hs trùng phương có 1 hoặc 3 cực trị – Mức độ 3. D11 – 2.11 Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn ĐK – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 4. D15 – 2.15 Tìm m để hs khác có cực trị thỏa mãn đk cho trước – Mức độ 4. D16 – 2.16 Bài toán liên quan đến đường thẳng đi qua hai điểm cực trị của hs bậc 3 và hs bậc 2 trên bậc 1 – Mức độ 3. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 1. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 2. D03 – 3.3 GTLN, GTNN trên khoảng – Mức độ 2. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 1. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 3. D07 – 3.7 Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình – Mức độ 3. D08 – 3.8 GTLN, GTNN của hs liên quan đến đồ thị, tích phân – Mức độ 4. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D12 – 3.12 GTLN, GTNN hàm nhiều biến – Mức độ 4. D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 3. D01 – 4.1 Câu hỏi lý thuyết về tiệm cận – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 3. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 1. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 2. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 3. D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hs biết BBT, đồ thị – Mức độ 2. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 3. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 4. D00 – 5.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 1. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 2. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 3. D03 – 5.3 Các phép biến đổi đồ thị – Mức độ 3. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 1. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 1. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 3. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 4. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 1. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 4. D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 4. D11 – 5.11 Tìm m liên quan đến tương giao của hs trùng phương – Mức độ 4. D12 – 5.12 Tìm m liên quan đến tương giao của hs khác – Mức độ 4. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 3. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 4. D01 – 1.1 Tính giá trị của biểu thức chứa lũy thừa – Mức độ 2. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 1. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 2. D02 – 2.2 Đạo hàm hàm số lũy thừa – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 2. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 3. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 1. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 2. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 3. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 1. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 2. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 3. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 3. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 4. D06 – 4.6 Đồ thị hàm số mũ, Logarit – Mức độ 2. D07 – 4.7 Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít – Mức độ 1. D08 – 4.8 Bài toán lãi suất – Mức độ 2. D08 – 4.8 Bài toán lãi suất – Mức độ 3. D09 – 4.9 Bài toán tăng trưởng – Mức độ 2. D09 – 4.9 Bài toán tăng trưởng – Mức độ 3. D01 – 5.1 Phương trình mũ cơ bản – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 1. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 4. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 1. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 3. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 4. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 3. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 4. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 3. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 4. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 6.1 Bất phương trình Mũ cơ bản – Mức độ 1. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 2. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 3. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 2. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 4. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 1. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 2. D07 – 6.7 Phương pháp đưa về cùng cơ số GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 4. D01 – 1.1 Định nghĩa, tính chất của nguyên hàm – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 2. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 1. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 3. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 2. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 3. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 2. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 3. D08 – 1.8 Nguyên hàm kết hợp đổi biến và từng phần – Mức độ 3. D09 – 1.9 Nguyên hàm của hàm ẩn – Mức độ 3. D10 – 1.10 Nguyên hàm của hs cho bởi nhiều công thức – Mức độ 3. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 1. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 1. D02 – 2.2 Tích phân cơ bản – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 2. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 4. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 2. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 3. D07 – 2.7 Kết hợp đổi biến và từng phần tính tích phân – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 2. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 4. D09 – 2.9 Tích phân bằng PP Vi Phân – Mức độ 4. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 2. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 3. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 1. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 1. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 3. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 4. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 1. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 2. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 3. D04 – 3.4 Thể tích tính theo mặt cắt S(x) – Mức độ 2. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 3. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 4. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 2. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 3. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 4. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 3. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 2. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 1. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 2. D03 – 1.3 Biểu diễn hình học cơ bản của số phức – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 1. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 4. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 2. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 3. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 4. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 1. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 1. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 3. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 2. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 3. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 1. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 2. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 1. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 2. D04 – 4.4 Phương trình quy về bậc hai – Mức độ 2. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 1. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 2. D06 – 4.6 Các bài toán khác về phương trình – Mức độ 3. D02 – 5.2 Phương pháp hình học – Mức độ 4. D03 – 5.3 Phương pháp đại số – Mức độ 3. D03 – 5.3 Phương pháp đại số – Mức độ 4. D03 – 2.3 Xác định góc giữa hai đường thẳng (dùng định nghĩa) – Mức độ 2. D03 – 3.3 Xác định góc giữa mặt phẳng và đường thẳng, hình chiếu – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 3. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 4. D02 – 5.2 Khoảng cách từ một điểm đến một đường thẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 3. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 2. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 3. D01 – 1.1 Nhận diện hình đa diện, khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 2. D03 – 1.3 Phân chia, lắp ghép các khối đa diện – Mức độ 2. D05 – 1.5 Phép biến hình trong không gian – Mức độ 1. D03 – 2.3 Tính chất đối xứng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D01 – 3.1 Diện tích xung quanh, diện tích toàn phần của khối đa diện – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 3. D03 – 3.3 Thể tích khối chóp có mặt bên vuông góc đáy – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 3. D04 – 3.4 Thể tích khối chóp đều – Mức độ 4. D05 – 3.5 Thể tích khối chóp khác – Mức độ 1. D05 – 3.5 Thể tích khối chóp khác – Mức độ 2. D05 – 3.5 Thể tích khối chóp khác – Mức độ 4. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 1. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 3. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 1. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 2. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 3. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 1. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 2. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 1. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 4. D11 – 3.11 Thể tích khối đa diện – Mức độ 1. D11 – 3.11 Thể tích khối đa diện – Mức độ 3. D11 – 3.11 Thể tích khối đa diện – Mức độ 4. D12 – 3.12 Các bài toán khác (góc, khoảng cách,…) liên quan đến thể tích khối đa diện – Mức độ 3. D13 – 3.13 Bài toán cực trị – Mức độ 4. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 2. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 3. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về khối nón – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 2. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 3. D03 – 1.3 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón – Mức độ 2. D04 – 1.4 Khối nón nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D07 – 1.7 Câu hỏi lý thuyết về khối trụ – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 2. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 3. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 1. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 4. D10 – 1.10 Khối trụ nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 1. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 3. D13 – 1.13 Bài toán phối hợp giữa khối nón và khối trụ – Mức độ 3. D15 – 1.15 Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D01 – 2.1 Câu hỏi lý thuyết – Mức độ 1. D03 – 2.3 Tính diện tích mặt cầu, thể tích khối cầu khi biết bán kính – Mức độ 1. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 2. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 3. D06 – 2.6 Bài toán tổng hợp về khối nón, khối trụ, khối cầu – Mức độ 3. D07 – 2.7 Bài toán cực trị về khối cầu – Mức độ 4. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 1. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 2. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 1. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 2. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 1. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 4. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 3. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 4. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 1. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 2. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 3. D07 – 1.7 Các bài toán cực trị – Mức độ 4. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 2.1 Xác định VTPT – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 2. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 3. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 2. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 3. D04 – 2.4 Tìm tọa độ điểm liên quan đến mặt phẳng – Mức độ 1. D05 – 2.5 Góc giữa hai mặt phẳng – Mức độ 3. D06 – 2.6 Khoảng cách từ điểm đến mặt phẳng và bài toán liên quan – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 4. D10 – 2.10 Điểm thuộc mặt phẳng – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 2. D12 – 2.12 PTMP theo đoạn chắn – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 2. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 3. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 1. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 1. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 3. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 4. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 1. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 2. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 3. D07 – 3.7 Vị trí tương đối giữa đường thẳng và mặt phẳng – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 3. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 4. D09 – 3.9 Các bài toán cực trị – Mức độ 3. D10 – 3.10 Điểm thuộc đường thẳng – Mức độ 1. D11 – 3.11 Phương trình đường thẳng liên quan đến góc và khoảng cách – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 4.

Nguồn: toanmath.com

Đọc Sách

Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2021)
Nội dung Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2021) Bản PDF - Nội dung bài viết Sản phẩm toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2021) Sản phẩm toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2021) Tài liệu "Toàn cảnh đề thi tốt nghiệp THPT môn Toán" được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, bao gồm 880 trang tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán từ năm học 2016 – 2017 đến năm học 2020 – 2021. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. Danh sách chuyên đề bao gồm: D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3 D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4 D01 – 1.1 Quy tắc cộng – Mức độ 1 ... (có nhiều chuyên đề khác) Tài liệu này là công cụ hữu ích giúp học sinh hiểu rõ các dạng toán phổ biến xuất hiện trong đề thi tốt nghiệp THPT môn Toán. Nó giúp họ rèn luyện kỹ năng giải quyết các bài toán đa dạng, từ mức độ dễ đến khó, từ các chuyên đề cơ bản đến nâng cao. Việc ôn tập thông qua tài liệu này giúp học sinh tự tin hơn khi bước vào kỳ thi quan trọng.
Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1)
Nội dung Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1) Bản PDF - Nội dung bài viết Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Strong Team Toán VD – VDC đã biên soạn tài liệu gồm 43 trang phát triển bài toán mức độ vận dụng – vận dụng cao trong đề thi chính thức tốt nghiệp Trung học Phổ thông năm 2021 môn Toán (đợt 1) – mã đề 101. Tài liệu này bao gồm các câu hỏi từ câu 36 đến câu 50, đề cập đến các bài toán phức tạp và thú vị. Trích dẫn một số bài toán trong tài liệu: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P: x/2 + y/2 + z/15 = 0. Gọi M là điểm di động trên P, N là điểm thuộc tia OM sao cho OM = ON = 10. Khoảng cách nhỏ nhất từ N đến mặt phẳng P bằng bao nhiêu? Cho hai hàm số f(x) = 4x^2 + ax + b và g(x) = cx^3 + dx^2 + 3. Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại hai điểm có hoành độ lần lượt là -2 và 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng bao nhiêu? Trong tập số phức, cho phương trình m^2z^2 + m^3z - m = 0. Có bao nhiêu giá trị nguyên của m trong đoạn [0, 2021] để phương trình có 2 nghiệm phân biệt z1 và z2 thỏa mãn z1 + z2 = 1? Cho hình trụ đứng có hai đáy là hai đường tròn tâm O và tâm O', bán kính bằng a, chiều cao hình trụ bằng 2a. Mặt phẳng đi qua trung điểm OO' và tạo với OO' một góc 30 độ, cắt đường tròn đáy tâm O theo dây cung AB. Độ dài đoạn AB là bao nhiêu? Tài liệu này không chỉ hữu ích cho các em học sinh tham dự kỳ thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 mà còn giúp các thầy cô giáo tham khảo và sử dụng trong các năm học sau.
Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán
Nội dung Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán Bản PDF - Nội dung bài viết Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu này gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam. Cùng nhau, họ phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu vận dụng – vận dụng cao trong đề thi tham khảo tốt nghiệp THPT năm 2021 môn Toán (câu 41 – câu 50). Trích dẫn tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán: + Đây là bài toán tính tích phân của hàm hợp. Để tính được tích phân trên ta phải thực hiện phép đổi biến để đưa về hàm đã cho. Cụ thể các bước thực hiện như sau: Bước 1: Đặt 2sin(1/x) = t. Bước 2: Biểu thị cos(x)dx = dt. Bước 3: Đổi cận và tính tích phân từ a đến b f(t)dt. Đây là dạng toán thuộc mức độ vận dụng, việc nhận ra hướng giải đòi hỏi học sinh phải nắm chắc các khái niệm và tính chất của tích phân cũng như các phương pháp tính tích phân. + Hướng phát triển: Xét các số phức thỏa mãn điều kiện (cho một giả thiết về modun, một giả thiết về số thuần ảo/ số thực) đưa về phương trình hoặc hệ phương trình. Nếu cho giả thiết số thuần ảo thì chỉ cần xác định phần thực và cho bằng 0. Nếu cho giả thiết là số thực thì chỉ cần xác định phần ảo và cho bằng 0. + Bài toán trên là bài toán về tính thể tích khối chóp liên quan góc giữa một đường thẳng và mặt phẳng. Thông thường đề bài hay cho góc giữa một cạnh bên và mặt đáy của hình chóp liên quan đến chân đường cao của hình chóp, tức hình chiếu của đường thẳng lên mặt phẳng tương đối dễ xác định, thì dạng bài này đề lại cho góc giữa một đường thẳng và mặt phẳng mà tương đối khó xác định hình chiếu của đường lên mặt hơn. Khi xác định được góc giữa đường thẳng và mặt phẳng suy ra độ dài đường cao, từ đó tính thể tích khối chóp. Để làm tốt được bài tập dạng này các em cần nắm chắc phương pháp xác định góc giữa đường thẳng và mặt phẳng.
Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh
Nội dung Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Bản PDF - Nội dung bài viết Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Tài liệu Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán do thầy giáo Huỳnh Văn Ánh biên soạn bao gồm 239 trang. Tài liệu này tập trung vào việc giới thiệu kiến thức cần ghi nhớ và chọn lọc các bài tập trắc nghiệm từ 50 dạng toán khác nhau được phát triển từ đề tham khảo (đề minh họa) thi tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo. Cụ thể, tài liệu này chia các dạng toán theo cấp độ từ lớp 1 đến lớp 50, bao gồm nhiều chủ đề khác nhau. Đầu tiên là dạng toán về phép đếm, hoán vị, chỉnh hợp và tổ hợp cho học sinh lớp 1. Tiếp theo là các dạng toán khó hơn như cực trị, tiệm cận, nhận dạng đồ thị, giá trị lớn nhất/nhỏ nhất, bất phương trình, xác suất, số phức, tích phân, và nhiều chủ đề khác từ lớp 2 đến lớp 50. Đặc biệt, tài liệu cũng tập trung vào việc giải quyết các bài toán ứng dụng thực tế để giúp học sinh áp dụng kiến thức toán học vào cuộc sống hàng ngày. Ngoài ra, tài liệu cũng giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và cải thiện kỹ năng làm bài thi tốt nghiệp THPT. Với sự chăm chỉ học tập và ôn luyện theo tài liệu này, học sinh sẽ cải thiện khả năng làm toán, tự tin hơn khi đối mặt với kỳ thi tốt nghiệp THPT 2021 môn Toán. Tài liệu này thực sự là người bạn đồng hành đắc lực cho các học sinh trên con đường chinh phục môn Toán trong kỳ thi quan trọng của mình.