Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường THCS Phù Linh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử vào lớp 10 môn Toán năm học 2021 – 2022 trường THCS Phù Linh, huyện Sóc Sơn, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 05 năm 2021. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường THCS Phù Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho parabol (P): 2y = −x và đường thẳng (d): y = mx − m − 2 (m là tham số). a) Với m = −2 , tìm tọa độ giao điểm của đường thẳng (d) và parabol (P). b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm biệt có hoành độ x1, x2 thỏa mãn x1 − x2 = 20. + Cho tam giác ABC nhọn nội tiếp đường tròn (O; R). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2R.AD và MD // BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất. + Cho hai số thực dương a, b thỏa mãn điều kiện a + b ≥ 3. Tìm giá trị lớn nhất của biểu thức a b M a b 2 2 1..

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Ninh Bình
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Ninh Bình gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một ô tô dự định đi từ bến xe A đến bến xe B cách nhau 90 km với vận tốc không đổi. Tuy nhiên, ô tô khởi hành muộn 12 phút so với dự định. Để đến bến xe B đúng giờ ô tô đã tăng vận tốc lên 5 km/h so với vận tốc dự định. Tìm vận tốc dự định của ô tô. + Cho đường tròn tâm O, bán kính R. Từ điểm C nằm ngoài đường tròn kẻ hai tiếp tuyến CA, CB và cát tuyến CMN với đường tròn (O) (A, B là hai tiếp điểm, M nằm giữa C và N). Gọi H là giao điểm của CO và AB. [ads] a) Chứng minh tứ giác AOBC nội tiếp b) Chứng minh CH.CO = CM.CN c) Tiếp tuyến tại M của đường tròn (O) cắt CA, CB theo thứ tự tại E và F. Đường vuông góc với CO tại O cắt CA, CB theo thứ tự tại P, Q. Chứng minh 2 góc POE và OFQ bằng nhau d) Chứng minh: PE + QF >= PQ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Tiền Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Tiền Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 150km. Một xe máy khởi hành từ A đến B, cùng lúc đó một ôtô cũng khởi hành từ B đến A với vận tốc lớn hơn vận tốc của xe máy là 10km/h. Ôtô đến A được 30 phút thì xe máy cũng đến B. Tính vận tốc của mỗi xe. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Gọi M là điểm chính giữa của cung AB, N là điểm bất kỳ thuộc cung MB (N khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tâm O lần lượt tại C và D [ads] 1. Tính số đo góc ACB 2. Chứng minh tứ giác MNDC nội tiếp trong một đường tròn 3. Chứng minh AM.AC = AN.AD = 4R^2 + Cho hình nón có đường sinh bằng 26cm, diện tích xung quanh là 260pi cm2. Tính bán kính đáy và thể tích của hình nón.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, có đáp án và lời giải chi tiết.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – Thừa Thiên Huế gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB [ads] a) Chứng minh tứ giác MAIB nội tiếp b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct