Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ thuật giải toán tích phân

Ebook gồm 582 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, hướng dẫn các kỹ thuật giải toán nguyên hàm, tích phân và ứng dụng; giúp học sinh ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, kỳ thi HSG Toán THPT. Mục lục tài liệu kỹ thuật giải toán tích phân: GIỚI THIỆU ĐÔI NÉT VỀ LỊCH SỬ. CHƯƠNG 1 . NGUYÊN HÀM – TÍCH PHÂN HÀM PHÂN THỨC HỮU TỶ. CHƯƠNG 2 . NGUYÊN HÀM – TÍCH PHÂN TỪNG PHẦN. 1. Giới thiệu. 2. Một số bài toán cơ bản. 3. Một số bài toán tổng hợp. CHƯƠNG 3 . CÁC BÀI TOÁN VỀ HÀM LƯỢNG GIÁC. 1. Giới thiệu các lý thuyết cần nhớ. 2. Các dạng toán và phương pháp. 3. Các bài toán biến đổi tổng hợp. CHƯƠNG 4 . NGUYÊN HÀM TÍCH PHÂN HÀM VÔ TỶ, CĂN THỨC. 1. Giới thiệu. 2. Các dạng toán. 3. Kỹ thuật lượng giác hóa. 4. Tổng kết. 5. Các bài toán tổng hợp. CHƯƠNG 5 . CÁC LOẠI TÍCH PHÂN ĐẶC BIỆT. 1. Tích phân liên kết. 2. Kỹ thuật đưa biểu thức vào dấu vi phân. 3. Kỹ thuật đánh giá hàm số. 4. Tích phân hàm trị tuyệt đối. 5. Tích phân có cận thay đổi. 6. Tích phân hàm phân nhánh. 7. Tích phân truy hồi và các bài toán liên quan dãy số. 8. Chứng minh đẳng thức tổ hợp. CHƯƠNG 6 . PHƯƠNG PHÁP ĐỔI CẬN ĐỔI BIẾN – HÀM ẨN. 1. Kỹ thuật đổi ẩn và tính chất các hàm đặc biệt. 2. Các bài toán phương trình hàm. 3. Bài tập tổng hợp. CHƯƠNG 7 . CÁC BÀI TOÁN VỀ PHƯƠNG TRÌNH VI PHÂN. 1. Bài toán liên quan tới tích. 2. Bài toán liên quan tới tổng. 3. Một số bài toán tổng hợp. CHƯƠNG 8 . CÁC ỨNG DỤNG CỦA TÍCH PHÂN. 1. Ứng dụng tính diện tích hình phẳng. 2. Ứng dụng tính thể tích. 3. Ứng dụng tích phân trong thực tiễn. CHƯƠNG 9 . BẤT ĐẲNG THỨC TÍCH PHÂN. 1. Phân tích bình phương. 2. Cân bằng hệ số và bất đẳng thức AM – GM. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân.

Nguồn: toanmath.com

Đọc Sách

Một số thủ thuật tính tích phân
Tài liệu gồm 34 trang, được biên soạn bởi quý thầy, cô giáo kênh PPT – TV, hướng dẫn một số thủ thuật giải bài toán tích phân vận dụng – vận dụng cao (VD – VDC), giúp học sinh tìm hiểu chuyên sâu chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán; các bài toán được chọn lọc trong các đề thi thử THPT môn Toán. I. Các phương pháp thường sử dụng. + Phương pháp tự luận. + Phương pháp Casio. + Phương pháp chọn hàm đại diện. II. Bài tập. III. Đáp án & lời giải chi tiết.
Tổng ôn tập TN THPT 2020 môn Toán Ứng dụng của tích phân
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề ứng dụng của tích phân; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Ứng dụng của tích phân: Vấn đề 1. Ứng dụng tích phân tính diện tích hình phẳng. Vấn đề 2. Ứng dụng tích phân tính thể tích. Vấn đề 3. Ứng dụng tích phân vào bài toán chuyển động.
Tổng ôn tập TN THPT 2020 môn Toán Tích phân
Tài liệu gồm 59 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề tích phân; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Tích phân: Vấn đề 1. Định nghĩa – tính chất của tích phân. Vấn đề 2. Tích phân cơ bản (thông qua bảng công thức nguyên hàm). Vấn đề 3. Tích phân hàm số hữu tỷ. Vấn đề 4. Phương pháp đổi biến số. Vấn đề 5. Phương pháp từng phần. Vấn đề 6. Tích phân hàm ẩn.
Tổng ôn tập TN THPT 2020 môn Toán Nguyên hàm
Tài liệu gồm 38 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Nguyên hàm: Vấn đề 1. Nguyên hàm cơ bản. Vấn đề 2. Nguyên hàm của hàm số hữu tỉ. Vấn đề 3. Tính nguyên hàm bằng phương pháp từng phần. Vấn đề 4. Nguyên hàm có điều kiện. Vấn đề 5. Nguyên hàm hàm ẩn.