Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và logarit - Bùi Trần Duy Tuấn

Chuyên đề lũy thừa, mũ và logarit do thầy Bùi Trần Duy Tuấn biên soạn nhằm làm tư liệu cho các em lớp 12 ôn thi kỳ thi THPT Quốc gia tham khảo, giúp các em ôn lại kiến thức nhanh chóng và hiệu quả hơn. Tài liệu gồm 341 trang tuyển tập kiến thức, dạng toán, thủ thuật Casio và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề lũy thừa, mũ và logarit trong chương trình Giải tích 12 chương 2. Chủ đề 1 . Lũy thừa  A. Kiến thức cần nắm I. Lũy thừa II. Căn bậc n B. Một số dạng toán liên quan về lũy thừa I. Viết lũy thừa với dạng số mũ hữu tỉ II. Tính giá trị của biểu thức III. Rút gọn biểu thức IV. So sánh các số C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm  Chủ đề 2 . Logarit A. Kiến thức cơ bản B. Một số dạng toán về logarit  I. Tính, rút gọn giá trị của một biểu thức chứa logarit II. Biểu diễn một logarit theo các logarit cho trước C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm Chủ đề 3 . Hàm số lũy thừa – mũ – logarit A. Kiến thức cần nắm I. Hàm lũy thừa II. Hàm số mũ III. Hàm số logarit B. Một số dạng toán thường gặp I. Tìm tập xác định của hàm số II. Tính đạo hàm của hàm số III. Tính đơn điệu của hàm số IV. Đồ thị của hàm số V. Tính giá trị biểu thức C. Bài tập trắc nghiệm [ads] Chủ đề 4 . Phương trình, hệ phương trình mũ – logarit A. Các phương pháp giải phương trình mũ và logarit I. Phương pháp đưa về cùng cơ số giải phương trình mũ và logarit II. Phương pháp đặt ẩn phụ giải phương trình mũ và logarit III. Phương pháp logarit hóa giải phương trình mũ và logarit IV. Phương pháp hàm số để giải phương trình mũ và logarit V. Phương trình chứa tham số B. Hệ phương trình mũ và logarit I. Phương pháp thế II. Phương pháp biến đổi tương đương III. Phương pháp đặt ẩn phụ IV. Phương pháp hàm số C. Thủ thuật casio giải phương trình mũ – logarit  I. Phương pháp sử dụng shift solve II. Phương pháp Calc III. Phương pháp sử dụng mode 7 D. Bài tập trắc nghiệm Chủ đề 5 . Bất phương trình mũ – logarit A. Phương pháp giải bất phương trình mũ và loagrit I. Phương pháp biến đổi tương đương cho bất phương trình mũ II. Phương pháp biến đổi tương đương cho bất phương trình logarit III. Phương pháp đặt ẩn phụ giải bất phương trình mũ và loagrit IV. Phương pháp logarit hóa giải bất phương trình mũ và logarit V. Phương pháp sử dụng tính chất của hàm số để giải bất phương trình mũ và logarit VI. Bất phương trình chứa tham số B. Thủ thuật casio giải bất phương trình mũ và loagrit I. Phương pháp 1. Calc theo chiều thuận II. Phương pháp 2 . Calc theo chiều nghịch III. Phương pháp 3. Lập bảng giá trị mode 7 IV. Phương pháp 4. Lược đồ con rắn C. Bài tập trắc nghiệm Chủ đề 6 . Các bài toán ứng dụng của hàm số mũ – logarit A. Các dạng toán ứng dụng của hàm số lũy thừa – mũ – logarit Một số khái niệm liên quan đến bài toán ngân hàng I. Lãi đơn 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ, tìm vốn ban đầu II. Lãi kép 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ. Tìm vốn ban đầu III. Bài toán vay trả góp – góp vốn IV. Bài toán lãi kép liên tục – công thức tăng trưởng mũ – ứng dụng Trong lĩnh vực đời sống xã hội 1. Bài toán lãi kép liên tục 2. Bài toán về dân số V. Ứng dụng trong lĩnh vực khoa học kỹ thuật B. Bài tập trắc nghiệm Xem thêm chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn: + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn

Nguồn: toanmath.com

Đọc Sách

Một số bài toán cơ bản về tính lãi suất ngân hàng - Hoàng Tiến Trung
Tài liệu gồm 8 trang trình bày công thức giải các bài toán lãi suất ngân hàng kèm theo các ví dụ mẫu có lời giải chi tiết. + Lãi đơn: Lãi được tính theo tỉ lệ phần trăm trong một khoảng thời gian cố định trước. Ví dụ : Khi ta gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9% /năm thì sau một năm ta nhận được số tiền lãi là: 50 * 6,9% = 3,45 (triệu đồng) – Số tiền lãi này như nhau được cộng vào hàng năm. Kiểu tính lãi này được gọi là lãi đơn. – Sau hai năm số tiền cả gốc lẫn lãi là: 50 + 2 * 3,45 = 56,9 (triệu đồng) – Sau n năm số tiền cả gốc lẫn lãi là: 50 + n * 3,45 (triệu đồng) [ads] + Lãi kép: Sau một đơn vị thời gian (kỳ hạn), tiền lãi được gộp vào vốn và được tính lãi. Loại lãi này được gọi là lãi kép. Ví dụ: Khi gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9%/năm thì sau một năm, ta nhận được số tiền cả gốc lẫn lãi là : 50 + 3,45 =  53,45 (triệu đồng) – Toàn bộ số tiền này được gọi là gốc. – Tổng số tiền cuối năm thứ hai là: 53,45 + 53,45 * 6,9% = 53,45 * (1 + 6,9%) (triệu đồng)
Phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit - Nguyễn Đình Hoàn
Tài liệu gồm 25 trang giới thiệu phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit do tác giả Nguyễn Đình Hoàn biên soạn. Tài liệu gồm 5 ví dụ và 12 bài toán áp dụng có lời giải chi tiết. Cách 1: Nâng lũy thừa không hoàn toàn Cách 2: Nâng lũy thừa hoàn toàn Cách 3: Nâng lũy thừa hoàn toàn kết hợp với ẩn phụ Các ví dụ mẫu được giải chi tiết kèm theo phần bình luận, rút kinh nghiệm sau mỗi bài toán giúp bạn đọc hiểu rõ và biết cách vận dụng hợp lý vào các bài toán khác. [ads]
Các phương pháp giải PT - BPT - HPT Mũ và Logarit - Nguyễn Trung Kiên
Tài liệu Các phương pháp giải phương trình – bất phương trình – hệ phương trình Mũ và Logarit của thầy Nguyễn Trung Kiên gồm 54 trang. Tài liệu tóm gọn các phương pháp giải và một số ví dụ mẫu của PT-BPT-HPT Mũ và Logarit.
Chuyên đề phương trình mũ và logarit - Nguyễn Thành Long
Tài liệu chuyên đề phương trình mũ và logarit của tác giả Nguyễn Thành Long gồm 179 trang, gồm các dạng bài toán phương trình – bất phương trình – hệ phương trình – phương trình chứa tham số mũ và logarit có hướng dẫn và lời giải chi tiết. Các bài toán được phân thành nhiều dạng khác nhau dựa vào phương pháp giải.