Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt nón, mặt trụ, mặt cầu - Hoàng Xuân Nhàn

Tài liệu gồm 102 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, bao gồm lí thuyết, phương pháp giải toán, các ví dụ minh họa và bài tập chuyên đề mặt nón, mặt trụ, mặt cầu trong chương trình môn Toán 12 phần Hình học. BÀI 1 . MẶT NÓN, HÌNH NÓN, KHỐI NÓN (Trang 01). PHẦN I. LÍ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN (Trang 01). Mặt nón, hình nón và các yếu tố liên quan (Trang 01). Hình nón cụt và khối nón cụt (Trang 02). Khối ghép được tạo bởi hai hình nón chung đáy (Trang 02). Thiết diện qua trục của hình nón (Trang 03). Thiết diện vuông góc với trục hình nón (Trang 04). Thiết diện qua đỉnh hình nón và không qua trục hình nón (Trang 04). Hình nón ngoại tiếp và nội tiếp hình chóp đều (Trang 05). PHẦN II. CÁC VÍ DỤ MINH HỌA VÀ BÀI TẬP (Trang 07). Dạng 1. Mặt nón và các yếu tố liên quan (Trang 07). Dạng 2. Sự hình thành của mặt nón, hình nón (Trang 10). Dạng 3. Thiết diện qua trục của hình nón (Trang 13). Dạng 4. Thiết diện qua đỉnh và không chứa trục của hình nón (Trang 15). Dạng 5. Thiết diện vuông góc với trục của hình nón (Trang 19). Dạng 6. Hình nón ngoại tiếp và nội tiếp hình đa diện (Trang 22). Dạng 7. Max-min và bài toán thực tế (Trang 26). ĐÁP ÁN TRẮC NGHIỆM BÀI 1: MẶT NÓN, HÌNH NÓN, KHỐI NÓN (Trang 29). BÀI 2 . MẶT TRỤ, HÌNH TRỤ, KHỐI TRỤ (Trang 30). PHẦN I. LÍ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN (Trang 30). Mặt trụ và các yếu tố liên quan (Trang 30). Thiết diện vuông góc với trục hình trụ (Trang 30). Thiết diện qua trục hình trụ (Trang 31). Hình trụ cụt (hay phiến trụ) (Trang 31). Hình nêm (Trang 32). Hình trụ ngoại tiếp lăng trụ tam giác đều (Trang 32). Hình trụ nội tiếp lăng trụ tam giác đều (Trang 32). Hình trụ ngoại tiếp lăng trụ tứ giác đều (Trang 33). Hình trụ nội tiếp lăng trụ tứ giác đều (Trang 33). Hình trụ ngoại tiếp hình nón (Trang 33). Hình trụ nội tiếp hình nón (Trang 34). PHẦN II. CÁC VÍ DỤ MINH HỌA VÀ BÀI TẬP (Trang 34). Dạng 1. Hình trụ và các yếu tố cơ bản (Trang 34). Dạng 2. Sự hình thành mặt trụ, khối trụ (Trang 37). Dạng 3. Thiết diện qua trục của hình trụ (Trang 40). Dạng 4. Thiết diện song song với trục hình trụ (Trang 42). Dạng 5. Thiết diện nghiêng so với trục hình trụ (Trang 45). Dạng 6. Hình trụ ngoại tiếp, nội tiếp hình đa diện, hình nón (Trang 49). Dạng 7. Hình đa diện có tất cả cạnh chứa trong hình trụ (Trang 55). Dạng 8. Max-min và bài toán thực tế (Trang 56). ĐÁP ÁN TRẮC NGHIỆM BÀI 2: MẶT TRỤ, HÌNH TRỤ, KHỐI TRỤ (Trang 63). BÀI 3 . MẶT CẦU, KHỐI CẦU (Trang 64). PHẦN I. LÍ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN (Trang 64). Mặt cầu và các công thức liên quan (Trang 64). Điểm đối với mặt cầu (Trang 64). Vị trí tương đối giữa mặt cầu và mặt phẳng (Trang 64). Vị trí tương đối giữa mặt cầu và đường thẳng (Trang 65). Mặt cầu ngoại tiếp hình chóp (Trang 66). Mặt cầu ngoại tiếp tứ diện có ba cạnh đôi một vuông góc (Trang 66). Mặt cầu ngoại tiếp hình chóp có các đỉnh cùng nhìn một cạnh dưới một góc vuông (Trang 67). Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với mặt đáy (Trang 67). Mặt cầu ngoại tiếp hình chóp đều (Trang 68). Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc mặt đáy (Trang 69). Mặt cầu nội tiếp hình chóp tam giác đều (Trang 70). Mặt cầu nội tiếp hình chóp tứ giác đều (Trang 71). Mặt cầu ngoại tiếp hình bát diện đều (Trang 72). Mặt cầu ngoại tiếp hình lăng trụ tam giác đều (Trang 72). Mặt cầu ngoại tiếp hình hộp chữ nhật (Trang 72). Mặt cầu nội tiếp hình lập phương (Trang 73). Mặt cầu nội tiếp hình nón (Trang 73). Công thức liên quan đến chõm cầu (Trang 74). PHẦN II. CÁC VÍ DỤ MINH HỌA VÀ BÀI TẬP (Trang 74). Dạng 1. Mặt cầu, khối cầu và các yếu tố cơ bản (Trang 74). Dạng 2. Mặt cầu và bài toán thực tế (Trang 76). Dạng 3. Giao tuyến giữa mặt cầu và mặt phẳng (Trang 78). Dạng 4. Mặt cầu ngoại tiếp, nội tiếp hình chóp và lăng trụ (Trang 79). Dạng 5. Mặt cầu ngoại tiếp và nội tiếp hình nón, hình trụ (Trang 87). MỘT SỐ BÀI TOÁN VẬN DỤNG, VẬN DỤNG CAO MẶT CẦU (Trang 91). ĐÁP ÁN TRẮC NGHIỆM BÀI 3: MẶT CẦU, KHỐI CẦU (Trang 97).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt cầu, mặt trụ, mặt nón ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 373 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón (Hình học 12 chương 2), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . MẶT NÓN, HÌNH NÓN VÀ KHỐI NÓN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối nón. + Dạng toán 2. Thể tích khối nón. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối nón. + Dạng toán 2. Thể tích khối nón. + Dạng toán 3. Khối nón tròn xoay nội tiếp, ngoại tiếp khối đa diện. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán. Một số bài toán VD – VDC liên quan đến khối nón (các bài toán thực tế – cực trị). CHUYÊN ĐỀ 2 . MẶT TRỤ, HÌNH TRỤ VÀ KHỐI TRỤ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối trụ. + Dạng toán 2. Thể tích khối trụ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối trụ. + Dạng toán 2. Thể tích khối trụ. + Dạng toán 3. Khối trụ tròn xoay nội tiếp, ngoại tiếp khối đa diện. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán. Một số bài toán VD – VDC liên quan đến khối trụ (các bài toán thực tế – cực trị). CHUYÊN ĐỀ 3 . MẶT CẦU VÀ KHỐI CẦU. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Diện tích xung quanh, bán kính mặt cầu – khối cầu. + Dạng toán 2. Thể tích khối cầu. + Dạng toán 3. Khối cầu nội tiếp, ngoại tiếp khối lăng trụ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Khối cầu ngoại tiếp khối lăng trụ. + Dạng toán 2. Khối cầu ngoại tiếp khối chóp. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán. Một số bài toán thực tế – cực trị liên quan đến mặt cầu – khối cầu. CHUYÊN ĐỀ 4 . MỘT SỐ BÀI TOÁN TỔNG HỢP KHỐI TRÒN XOAY.
Chuyên đề mặt cầu, mặt trụ, mặt nón dành cho học sinh trung bình - yếu - Dương Minh Hùng
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tổng hợp lý thuyết cần nắm, phân dạng và tuyển chọn các bài tập tự luận & trắc nghiệm (mức độ nhận biết – thông hiểu, có đáp án và lời giải chi tiết) chuyên đề mặt cầu, mặt trụ, mặt nón dành cho học sinh trung bình – yếu. Bài 1 . MẶT NÓN TRÒN XOAY. Dạng 1. Dạng cơ bản (cho các thông số r, h, l). Dạng 2. Thiết diện qua trục SO. Dạng 3. Khối nón sinh bởi tam giác quay quanh các trục. Dạng 4. Bài toán thiết diện qua đỉnh và mối liên hệ với góc hoặc khoảng cách. Bài 2 . MẶT TRỤ TRÒN XOAY. Dạng 1. Dạng cơ bản (cho các thông số r, h, l). Dạng 2. Sự tạo thành mặt trụ tròn xoay. Dạng 3. Sự tương giao giữa hình trụ và mặt phẳng, đường thẳng. Bài 3 . MẶT CẦU. Dạng 1. Công thức lí thuyết cơ bản. Dạng 2. Khối cầu ngoại tiếp khối đa diện. Bài 4 . BÀI TOÁN NỘI TIẾP – NGOẠI TIẾP. Dạng 1. Mặt nón nội tiếp – ngoại tiếp hình chóp – trụ – cầu. Dạng 2. Mặt trụ nội tiếp – ngoại tiếp hình chóp – nón – cầu. Dạng 2. Mặt cầu nội tiếp – ngoại tiếp hình chóp – nón – trụ. Xem thêm : Chuyên đề thể tích khối đa diện dành cho học sinh trung bình – yếu – Dương Minh Hùng
Chuyên đề mặt nón, mặt trụ và mặt cầu - Lê Văn Đoàn
Tài liệu gồm 72 trang, được biên soạn bởi nhóm Toán thầy Lê Văn Đoàn: Ths. Lê Văn Đoàn – Ths. Trương Huy Hoàng – Ths. Nguyễn Tiến Hà – Bùi Sỹ Khanh – Nguyễn Đức Nam – Đỗ Minh Tiến, phân dạng và tuyển chọn các bài tập trắc nghiệm (có đáp án) thuộc chương trình Hình học 12 chương 2: Mặt nón – Mặt trụ – Mặt cầu. Mục lục tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu – Lê Văn Đoàn: CHỦ ĐỀ 1 . MẶT NÓN. Dạng toán 1. Xác định các yếu tố cơ bản của khối nón. Dạng toán 2. Khối nón ngoại tiếp, nội tiếp khối đa diện. Bài tập về nhà. CHỦ ĐỀ 2 . MẶT TRỤ. Dạng toán 1. Xác định các yếu tố cơ bản của khối trụ. Dạng toán 2. Khối trụ ngoại tiếp, nội tiếp khối đa diện. Bài tập về nhà. CHỦ ĐỀ 3 . MẶT CẦU. Dạng toán 1. Xác định các yếu tố cơ bản của của mặt cầu. Dạng toán 2. Mặt cầu ngoại tiếp, nội tiếp khối nón, khối trụ. Dạng toán 3. Mặt cầu ngoại tiếp, nội tiếp khối chóp. + Nhóm 1. Hình chóp có cạnh bên vuông đáy. + Nhóm 2. Hình chóp đều. + Nhóm 3. Hình chóp có cạnh bên vuông với đáy. Dạng toán 4. Mặt cầu ngoại tiếp, nội tiếp hình lăng trụ, hình lập phương. Bài tập rèn luyện lần 1. Bài tập rèn luyện lần 2. Bài tập rèn luyện lần 3. Bài tập rèn luyện lần 4.
Tài liệu bồi dưỡng học sinh giỏi hình học không gian
Tài liệu gồm 103 trang, được sưu tầm và tổng hợp bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển tập các chuyên đề bồi dưỡng học sinh giỏi hình học không gian. Chương 1 . Phương pháp Vector. I. Cơ sở của phương pháp vector. II. Các bài toán ứng dụng vector. + Bài toán 1. Chứng minh đẳng thức vec tơ. + Bài toán 2. Chứng minh ba vec tơ đồng phẳng và bốn điểm đồng phẳng. + Bài toán 3. Tính độ dài đoạn thẳng. + Bài toán 4. Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian. + Bài toán 5. Tính góc giữa hai đường thẳng. Chương 2 . Các khối tứ diện đặc biệt. Trong chương trình hình học không gian bậc THPT có lẽ khối đa diện được nhắc tới nhiều nhất và cũng đồng thời được khai thác rất nhiều trong các đề thi thử, HSG, THPT Quốc gia chính là khối tứ diện. Chắc hẳn nhiều bạn đã từng gặp qua các bài toán về tứ diện mà các giả thiết của nó trông rất lạ, hoặc một số bài toán tính thể tích mà trong đó giả thiết liên quan tới góc hoặc tới cạnh chẳng hạn, và chúng ta chưa có cách giải quyết chúng. Vì thế trong chương này tôi sẽ cùng bạn đọc tìm hiểu các bài toán liên quan tới tứ diện từ dễ đến khó để có thể giải quyết hoàn toàn vấn đề này. I. Khối tứ diện tổng quát. + Công thức tính đường trọng tuyến. + Một số công thức về diện tích. + Một số công thức về thể tích của tứ diện. [ads] II. Các khối tứ diện đặc biệt. + Khối tứ diện vuông. + Khối tứ diện gần đều. + Tính chất của tứ diện trực tâm. Chương 3 . Cực trị hình học không gian. Cực trị và bất đẳng thức nói chung luôn là các bài toán khó yêu cầu người làm bài phải có kỹ năng tốt về bất đẳng thức cũng như kiến thức vững về hàm số cũng như đạo hàm. Trong chương này chúng ta sẽ cùng đi tìm hiểu lớp bài toán cực trị hình không gian cũng như bất đẳng thức trong hình không gian. I. Các kiến thức cơ bản về bất đẳng thức. + Bất đẳng thức Cauchy – AM – GM. + Bất đẳng thức Cauchy – Schwarz. + Bất đẳng thức Minkowski. II. Phương pháp giải các bài toán cực trị. + Bước 1. Biểu diễn đối tượng đề bài yêu cầu qua một (hoặc hai) đại lượng chưa biết ta gọi là biến x. + Bước 2. Tìm điều kiện của biến x dựa vào giả thiết đã cho. + Bước 3. Khảo sát hàm số theo biến x để tìm ra kết quả của bài toán.