Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1

Tài liệu gồm 151 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Pi Latex, tuyển tập các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1. Mục lục : A GIẢI TÍCH 3. Chương 1 KHẢO SÁT & VẼ ĐỒ THỊ HÀM SỐ 5. Vấn đề 1 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN 6. Dạng 1 Xét tính đơn điệu của hàm số 7. Dạng 2 Tìm tham số để hàm y = (ax + b)/(cx + d) đơn điệu trên từng khoảng xác định 9. Dạng 3 Tìm tham số để hàm bậc ba y = ax3 + bx2 + cx + d đơn điệu trên R 10. Dạng 4 Tìm tham số m để hàm số đơn điệu trên K 11. Dạng 5 Dùng tính đơn điệu chứng minh bất đẳng thức 15. Vấn đề 2 CỰC TRỊ 24. Dạng 1 Tìm cực trị hàm số: cực đại và cực tiểu 25. Dạng 2 Tìm tham số m để hàm bậc ba có cực trị 27. Dạng 3 Tìm tham số m để hàm trùng phương có một hoặc ba cực trị 30. Dạng 4 Tìm tham số m để hàm số đạt cực trị tại điểm 32. Vấn đề 3 GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT 38. Dạng 1 Tìm GTLN, GTNN của hàm số trên đoạn [a; b] 39. Dạng 2 Tìm GTLN, GTNN của hàm số trên khoảng (a; b) 40. Dạng 3 Các bài toán vận dụng cao, toán thực tế min, max 41. Vấn đề 4 TIỆM CẬN 45. Vấn đề 5 KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ 46. Dạng 1 Các dạng đồ thị hàm số bậc ba y = ax3 + bx2 + cx + d 47. Dạng 2 Các dạng đồ thị của hàm số trùng phương y = ax4 + bx2 + c 48. Dạng 3 Hàm phân thức (ax + b)/(cx + d) 49. Vấn đề 6 PHƯƠNG TRÌNH TIẾP TUYẾN 54. Dạng 1 Cho tiếp điểm y − y0 = f0(x0)·(x − x0) 54. Dạng 2 Cho hệ số góc tiếp tuyến k = f0(x0) 55. Dạng 3 Cho điểm tiếp tuyến đi qua 56. Vấn đề 7 TƯƠNG GIAO ĐỒ THỊ 61. Dạng 1 Tìm giao điểm của 2 đồ thị y = f(x), y = g(x) 61. Dạng 2 Biện luận số nghiệm của phương trình dựa vào đồ thị 62. Dạng 3 (C): y = (ax + b)/(cx + d) cắt (d) tại 2 điểm phân biệt 63. Dạng 4 y = ax3 + bx2 + cx + d cắt (d) tại 3 điểm phân biệt 64. Dạng 5 (C): y = ax3 + bx2 + cx + d cắt trục hoành lập thành một cấp số cộng 65. Dạng 6 Tìm m để hàm trùng phương cắt (d) tại bốn điểm phân biệt 66. Vấn đề 8 ĐIỂM CỐ ĐỊNH CỦA HỌ ĐƯỜNG CONG 67. Vấn đề 9 ĐIỂM CÓ TỌA ĐỘ NGUYÊN CỦA ĐỒ THỊ 68. Vấn đề 10 ĐỒ THỊ HÀM CHỨA GIÁ TRỊ TUYỆT ĐỐI 70. Dạng 1 Trị tuyệt đối toàn phần y = |f(x)| (C0) 70. Dạng 2 Trị tuyệt đối cùa riêng x: y = f(|x|)(C0) 71. Dạng 3 Trị tuyệt đối cục bộ y = |u(x)| · v(x) (C0) 72. Vấn đề 11 TÍNH CHẤT ĐỒ THỊ HÀM F0(X) 73. Dạng 1 Tính đơn điệu của hàm số y = f(x) dựa vào đồ thị y = f0(x) 73. Dạng 2 Cực trị của hàm số y = f(x) dựa vào đồ thị y = f0(x) 74. ÔN TẬP CHƯƠNG I 80. Chương 2 LŨY THỪA, MŨ & LÔGARIT 83. Vấn đề 1 LŨY THỪA 84. Vấn đề 2 LÔGARIT 86. Vấn đề 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT 89. Vấn đề 4 PHƯƠNG TRÌNH MŨ 97. Vấn đề 5 PHƯƠNG TRÌNH LOGARIT 98. Vấn đề 6 BẤT PHƯƠNG TRÌNH MŨ 100. Vấn đề 7 BẤT PHƯƠNG TRÌNH LÔGARIT 102. Vấn đề 8 HỆ PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 107. Dạng 1 107. Vấn đề 9 BÀI TOÁN THỰC TẾ 108. Dạng 1 Lãi đơn 108. Dạng 2 Lãi kép 108. Dạng 3 Tiền gửi hàng tháng 108. Dạng 4 Vay vốn trả góp 109. Chương 3 NGUYÊN HÀM, TICH PHÂN & ỨNG DỤNG 111. Chương 4 SỐ PHỨC 113. B HÌNH HỌC 115. Chương 5 KHỐI ĐA DIỆN 117. Vấn đề 1 KHỐI ĐA DIỆN ĐỀU 118. Dạng 1 Khối đa diện lồi 118. Dạng 2 Năm khối đa diện đều 119. Vấn đề 2 KHỐI CHÓP 121. Dạng 1 Hình chóp có cạnh bên vuông góc với đáy 121. Dạng 2 Hình chóp có mặt bên vuông góc với mặt đáy 124. Dạng 3 Hình chóp đa giác đều, hình chóp đều 126. Vấn đề 3 KHỐI LĂNG TRỤ 131. Dạng 1 Lăng trụ đứng, lăng trụ xiên 131. Chương 6 NÓN, TRỤ & CẦU 137. Vấn đề 1 MẶT CẦU 137. Vấn đề 1 MẶT CẦU – KHỐI CẦU 138. Dạng 1 Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp 140. Dạng 2 Tính diện tích, thể tích mặt cầu 141. Vấn đề 2 MẶT NÓN 143. Vấn đề 3 MẶT TRỤ 147. Chương 7 TỌA ĐỘ TRONG KHÔNG GIAN 151.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập trắc nghiệm chuyên đề khối đa diện - Huỳnh Đức Khánh
Tài liệu gồm 65 trang bao gồm tóm tắt lý thuyết và bài tập trắc nghiệm chọn lọc chuyên đề khối đa diện. Nội dung tài liệu gồm các phần: Bài 01. Khái niệm về khối đa diện I – Khối lăng trụ V1 khối chóp II – Khái niệm về hình đa diện V1 khối đa diện III – Hai đa diện bằng nhau IV – Phân chia V1 lắp ghép các khối đa diện Một số kết quản quan trọng Câu hỏi trắc nghiệm Bài 02. Khối đa diện lồi và khối đa diện đều I – Khối đa diện lồi II – Khối đa diện đều Câu hỏi trắc nghiệm [ads] Bài 03. Khái niệm về thể tích khối đa diện I – Nhắc lại một số định nghĩa II – Thể tích III – Tỉ số thể tích Câu hỏi trắc nghiệm + Vấn đề 1. Thể tích khối chóp + Vấn đề 2. Thể tích lăng trụ đứng + Vấn đề 3. Thể tích lăng trụ xiên + Vấn đề 4. Tỉ số thể tích
Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Lý thuyết và một số bài tập cơ bản về thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 32 trang tổng hợp lý thuyết, công thức giải và một số bài tập thể tích khối đa diện có lời giải chi tiết tương tự các bài toán trong đề minh họa lần 3 của Bộ GD và ĐT. A. Lý thuyết Phần 1. Khối đa diện, tính chất và cách dựng Nêu khái niệm, hình dạng và tính chất của các khối hình: tứ diện, hình chóp, hình lăng trụ, hình hộp, hình chóp tam giác đều, hình chóp tứ giác đều, hình lăng trụ đứng, hình hộp đứng, hình hộp chữ nhật, hình lập phương. [ads] Phần 2. Kỹ năng góc và khoảng cách Nắm vững kỹ năng xác định góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. Kỹ năng xác định khoảng cách từ một điểm đến đường thẳng, khoảng cách từ điểm đến mặt phẳng, khoảng cách giữa hai đường thẳng chéo nhau. Phần 3. Các kết quả và tính chất quan trọng cần lưu ý Các hệ quả rút ra hỗ trợ cho việc giải toán về thể tích khối đa diện B. Bài tập trắc nghiệm thể tích khối đa diện có đáp án và lời giải chi tiết
Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 15 trang trình bày phương pháp, ví dụ mẫu có lời giải chi tiết và bài tập rèn luyện về dạng toán tỷ số thể tích khối đa diện. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm cạnh SA. Mặt phẳng (α) qua M và song song với (ABCD), cắt các cạnh SB, SC, SD lần lượt tại N, P, Q. Gọi V1 = VS.ABCD và V2 = VS.MNPQ. Khẳng định nào sau đây đúng? A. V1 = 8V2 B. V1 = 6V2 C. V1 = 16V2 D. V1 = 4V2 [ads] + Cho khối lăng trụ tam giác ABC.A’B’C’, đường thẳng đi qua trọng tâm tam giác ABC song song với BC cắt AB tại D, cắt AC tại E. Mặt phẳng đi qua A, D, E’ chia khối lăng trụ thành hai phần, tỉ số thể tích (số bé chia cho số lớn) của chúng bằng? + Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối tứ diện ABCD bằng?