Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 trường Thoại Ngọc Hầu TP HCM

Nội dung Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 trường Thoại Ngọc Hầu TP HCM Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 môn Toán lớp 9 năm 2019-2020 trường Thoại Ngọc Hầu TP HCM Đề thi giữa học kì 1 môn Toán lớp 9 năm 2019-2020 trường Thoại Ngọc Hầu TP HCM Trong kỳ thi khảo sát chất lượng môn Toán lớp 9 tại trường THCS Thoại Ngọc Hầu, quận Tân Phú, thành phố Hồ Chí Minh, đề thi giữa học kì 1 năm học 2019 - 2020 đã được biên soạn cẩn thận. Đề thi bao gồm 5 bài toán được chia thành 01 trang và thời gian làm bài là 90 phút. Hãy cùng phân tích chi tiết và cụ thể các câu hỏi trong đề thi này. 1. Bài toán về giảm giá: Chú Hoàng muốn mua một cái máy giặt giá 12,000,000 đồng đang được khuyến mãi giảm 10%. Nếu chú Hoàng là khách hàng VIP, anh ta sẽ được giảm thêm 5% trên giá đã giảm. Hãy tính xem Chú Hoàng phải trả bao nhiêu tiền sau khi được giảm giá. 2. Bài toán về góc và khoảng cách: Một học sinh đứng trên sân thượng của căn nhà cao 15m nhìn thấy bạn đang đứng với góc nghiêng xuống 49 độ. Hỏi khoảng cách từ học sinh đến bạn đó là bao nhiêu mét? 3. Bài toán về hình chữ nhật: Tính độ dài đoạn thẳng, số đo góc và chứng minh các mệnh đề liên quan đến hình chữ nhật MNPQ (MQ < MN). Bài toán yêu cầu áp dụng kiến thức về đồng dạng và tỷ lệ. Đề thi giữa học kì 1 môn Toán lớp 9 năm 2019-2020 tại trường Thoại Ngọc Hầu TP HCM đòi hỏi học sinh phải áp dụng kiến thức từ nhiều chương trình học để giải quyết các bài toán đa dạng. Hãy cố gắng làm bài cẩn thận và chính xác để đạt kết quả tốt nhất trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa học kì 1 Toán 9 năm 2021 - 2022 trường THCS Thanh Xuân - Hà Nội
Đề thi giữa học kì 1 Toán 9 năm 2021 – 2022 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút (tính từ lúc mở đề).
Đề thi giữa học kì 1 Toán 9 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề thi giữa học kì 1 Toán 9 năm 2021 – 2022 trường THCS Thăng Long – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút (tính từ lúc mở đề), kì thi được diễn ra vào thứ Bảy ngày 06 tháng 11 năm 2021. Trích dẫn đề thi giữa học kì 1 Toán 9 năm 2021 – 2022 trường THCS Thăng Long – Hà Nội : + Cho biểu thức A và B. a) Tính giá trị của A với giá trị của x thỏa mãn x2 = 16. b) Rút gọn B. c) Tìm các giá trị nguyên của x để B – A =< 2/3. + Một cái cây có bóng in trên mặt đất dài 8m khi các tia sáng mặt trời tạo với mặt đất một góc 48°. Tính chiều cao của cây (kết quả làm tròn số thập phân thứ nhất). + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính BC; AH; HC và số đo góc BCA, biết AB = 6cm, AC = 8cm. b) Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh AB.AE = AC.AF. c) Kẻ FK vuông góc với BC (K thuộc BC). Chứng minh: FK.
Đề thi giữa học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Phan Chu Trinh - Hà Nội
Đề thi giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Phan Chu Trinh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 80 phút (tính từ lúc mở đề), kỳ thi được diễn ra vào thứ Bảy ngày 06 tháng 11 năm 2021. Trích dẫn đề thi giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Phan Chu Trinh – Hà Nội : + Một bể bơi hình chữ nhật có chiều dài đường chéo là 16m. Góc tạo bởi đường chéo và chiều rộng là 68 độ. Tính chiều dài và chiều rộng của bể bơi (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC nhọn (AB < AC), đường cao AD. Gọi E, F lần lượt là hình chiếu vuông góc của D trên AB, AC. a) Biết AF = 3,6 cm; FC = 6,4 cm. Tính DF và diện tích tam giác ADC. b) Chứng minh tam giác AEF đồng dạng với tam giác ACB. c) Chứng minh: tan3C = BE/CF. + Cho hai số a, b thỏa mãn điều kiện a > 0 và a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức A.
Đề thi giữa kì 1 Toán 9 năm 2021 - 2022 trường M.V. Lômônôxốp - Hà Nội
Đề thi giữa kì 1 Toán 9 năm 2021 – 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2021 – 2022 trường M.V. Lômônôxốp – Hà Nội : + (1,5 điểm) Cho hàm số bậc nhất y = 2x + 3 có đồ thị là đường thẳng (d). a) (1,0 điểm) Trong mặt phẳng tọa độ Oxy, vẽ đường thẳng (d); b) (0,5 điểm) Tính khoảng cách từ điểm N(0;1) đến đường thẳng (d). + (0,5 điểm) Hình vẽ bên minh họa một cái thang dài 5m dựa vào tường. Tính xem thang chạm tường ở độ cao bao nhiêu mét so với mặt đất, biết góc tạo bởi chân thang và mặt đất là 62 độ (góc an toàn – tức là đảm bảo thang không bị đổ khi sử dụng) (Kết quả làm tròn đến chữ số thập phân thứ hai). + (3 điểm) Cho tam giác ABC nhọn, đường cao AH. Gọi E là hình chiếu của H lên AB. a) (1,25 điểm) Biết AB = 3cm; BE = 2cm. Tính độ dài HD và góc ABC (số đo góc làm tròn đến độ); b) (1,25 điểm) Kẻ HF vuông góc với AC tại F. (0,75 điểm) Chứng minh bốn điểm A, E, H, F cùng thuộc một đường tròn; (0,5 điểm) Gọi D là trung điểm của HC. Chứng minh FD là tiếp tuyến của đường tròn đi qua 4 điểm A, E, H, F; (0,5 điểm) Gọi I là giao điểm các đường phân giác các góc trong của tam giác ABC. Gọi là khoảng cách từ 1 đến cạnh BC. Chứng minh r/AH < 1/2.