Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán 9 ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 80km. Một canô đi xuôi dòng từ bến A đến bến B rồi quay lại bến A. Tổng thời gian canô chạy trên sông cả đi và về là 9 giờ. Tính vận tốc riêng của canô, biết rằng vận tốc của dòng nước là 2 km/h và giả sử vận tốc riêng của canô không đổi. + Công ty sữa Vinamilk chuyên sản xuất sữa Ông Thọ, hộp sữa có dạng hình trụ có đường kính 7cm, chiều cao là 8cm. Tính diện tích giấy làm nhãn mác cho 24 hộp sữa (một thùng) loại trên theo 2cm. Biết nhãn dán kín phần thân hộp sữa như hình vẽ và không tính phần mép dán. (Lấy pi = 3,14; kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn O và điểm A cố định nằm ngoài đường tròn. Qua điểm A vẽ tiếp tuyến AB với đường tròn O (B là tiếp điểm) và một đường thẳng d cắt đường tròn O tại hai điểm C D sao cho AC AD (đường thẳng d không đi qua tâm O). 1. Chứng minh tam giác ABC đồng dạng tam giác ADB. 2. Hạ BH vuông góc với OA tại H. Chứng minh: AH AO AC AD. 3. Chứng minh tứ giác DOHC là tứ giác nội tiếp và tia phân giác của HCA đi qua điểm cố định khi đường thẳng d thay đổi nhưng không đi qua tâm O.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào THPT môn Toán năm 2018 2019 sở GD và ĐT TP. HCM
Nội dung Đề tuyển sinh vào THPT môn Toán năm 2018 2019 sở GD và ĐT TP. HCM Bản PDF - Nội dung bài viết Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT TP. HCM Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT TP. HCM Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT TP. HCM được thiết kế với 8 bài toán, trong đó thí sinh sẽ phải tự giải quyết trong thời gian 120 phút. Kỳ thi sẽ diễn ra vào ngày 03/06/2018, nhằm đánh giá và phân loại năng lực học Toán của học sinh khối lớp 9. Mục tiêu của đề thi là cung cấp cơ sở để các trường THPT trên địa bàn TP. Hồ Chí Minh chọn lọc học sinh theo chỉ tiêu của mỗi trường. Đề thi cũng đi kèm lời giải chi tiết, giúp học sinh hiểu rõ từng bài toán và cách giải.
Đề tuyển sinh môn Toán năm 2018 2019 sở GD và ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán năm 2018 2019 sở GD và ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang Đề tuyển sinh môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang Đề tuyển sinh lớp 10 môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang bao gồm 1 trang với 5 bài toán tự luận. Thí sinh sẽ có thời gian làm bài trong 120 phút. Kỳ thi sẽ diễn ra vào ngày 05/06/2018. Đề thi sẽ có lời giải chi tiết để giúp thí sinh hiểu rõ hơn về cách giải các bài toán. Trích đề tuyển sinh lớp 10 môn Toán năm 2018-2019 sở Tiền Giang: Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. Cho phương trình x^2 - 2x - 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.
Đề tuyển sinh năm 2018 2019 môn Toán chuyên Lê Quý Đôn Bình Định
Nội dung Đề tuyển sinh năm 2018 2019 môn Toán chuyên Lê Quý Đôn Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh năm 2018-2019 môn Toán chuyên Lê Quý Đôn Bình Định Đề tuyển sinh năm 2018-2019 môn Toán chuyên Lê Quý Đôn Bình Định Đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định là bài thi được biên soạn theo dạng tự luận, gồm 5 bài toán, thời gian làm bài là 120 phút. Đề thi có lời giải chi tiết để giúp các thí sinh hiểu rõ vấn đề và làm bài hiệu quả. Trong đề tuyển sinh có một bài toán thú vị: Một người cần đi từ điểm A đến B cách nhau 120 km bằng xe máy với vận tốc không đổi. Để đến B đúng thời điểm đã định, người đó phải tăng vận tốc sau khi nghỉ 10 phút sau 1 giờ điều động. Hãy tìm vận tốc ban đầu của người đó để đến điểm B đúng giờ. Bài toán thứ hai đưa ra một bài toán về tam giác nội tiếp trong đường tròn, yêu cầu chứng minh một số tính chất của tam giác đó. Bài toán này cần sự suy luận logic và khả năng tính toán chính xác của thí sinh. Đề tuyển sinh môn Toán chuyên Lê Quý Đôn Bình Định không chỉ đánh giá kiến thức mà còn đánh giá khả năng tư duy logic và sự tỉ mỉ trong các phép tính. Hy vọng các thí sinh sẽ làm tốt bài thi này để có cơ hội tiếp tục học tập tại trường THPT chuyên danh tiếng này.
Đề tuyển sinh chuyên năm 2018 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Nội dung Đề tuyển sinh chuyên năm 2018 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Đề tuyển sinh chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Đề tuyển sinh lớp 10 chuyên năm 2018-2019 môn Toán của sở GD và ĐT Thái Bình được biên soạn dành riêng cho các thí sinh chuyên Toán, Tin. Đề bao gồm 6 bài toán được tổ chức theo hình thức tự luận, thời gian làm bài 150 phút. Kết quả của bài thi này sẽ là cơ sở quan trọng để tuyển chọn những em học sinh có năng khiếu vượt trội trong môn Toán và Tin học để bồi dưỡng tại các lớp chuyên. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình: 1. Cho nửa đường tròn có đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có diện tích lớn nhất, trong đó hai đỉnh M, N thuộc nửa đường tròn và hai đỉnh P, Q thuộc đường kính AB. 2. Hai cây nến cùng chiều dài cháy hết trong 3 giờ và 4 giờ. Tính thời gian cần để đốt chúng sao cho phần còn lại của cây nến thứ hai gấp đôi phần còn lại của cây nến thứ nhất, bắt đầu từ lúc nào trong chiều. 3. Cho tam giác ABC có các cạnh AB = 4, AC = 3, BC = 5 và đường cao AH. Vẽ hai nửa đường tròn BH và HC trên nửa mặt phẳng bờ BC chứa điểm A. Chứng minh rằng tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến của hai đường tròn BH và HC.