Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bình Định Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh bản đề chính thức của kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 tại sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định: 1. Cho phương trình bậc hai: \(x^2 + 2(m - 1)x - 2m = 0\) (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt \(x_1, x_2\) với mọi giá trị của m. Tìm các giá trị của m để hai nghiệm \(x_1, x_2\) thoả |\(x_1 + 1\)| = |\(x_2 + 1\)|. 2. Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại P, đường thẳng AP cắt đường tròn (O) tại Q (khác A). Gọi M là trung điểm BC. Kẻ đường cao AH của tam giác ABC. Câu hỏi yêu cầu chứng minh một số điều kiện liên quan đến tứ giác, góc và tỷ lệ trong tam giác ABC. 3. Cho hình vuông có cạnh bằng 20. Bên trong hình vuông này chọn 2023 điểm phân biệt. Câu hỏi yêu cầu chứng minh sự tồn tại của ít nhất một tam giác có diện tích nhỏ hơn 1/10 trong tập hợp các điểm đã chọn và các đỉnh của hình vuông. Đây là một số câu hỏi mà các thí sinh sẽ phải giải quyết trong kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 – 2024 tại sở GD&ĐT Bình Định. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung)
Chiều Chủ Nhật ngày 12 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, đề gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 120 phút, đề thi được nhận định là khó. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung) : + Cho tam giác ABC có BC là góc nhỏ nhất trong ba góc của tam giác và nội tiếp đường tròn (O). Điểm D thuộc cạnh BC sao cho AD là phân giác BAC. Lấy các điểm M, N thuộc (O) sao cho các đường thẳng CM và BN cùng song song với đường thẳng AD. 1) Chứng minh rằng AM = AN. 2) Gọi giao điểm của đường thẳng MN với các đường thẳng AC, AB lần lượt là E, F. Chứng minh rằng bốn điểm B, C, E, F cùng thuộc một đường tròn. 3) Gọi P, Q theo thứ tự là trung điểm của các đoạn thẳng AM, AN. Chứng minh rằng các đường thẳng EQ, FP và AD đồng quy. [ads] + Tìm x và y nguyên dương thỏa mãn. + Với a và b là những số thực dương thỏa mãn. Chứng minh rằng.
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GDĐT Nam Định (Đề chuyên)
Chiều thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2020 – 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề chuyên) dành cho học sinh thi vào các lớp chuyên Toán; đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề chuyên) : + Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. a) Chứng minh các điểm A, M, H, I, N cùng thuộc một đường tròn và HA là tia phân giác của góc ΜΗΝ. b) Đường thẳng đi qua I và vuông góc với BC cắt MN tại K. Chứng minh AK đi qua trung điểm D của BC. c) Tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại N. Chứng minh BAS = CAD. + Cho các số thực không âm a, b, c thỏa mãn điều kiện a + b + c = 1. Chứng minh a^3 + b^3 + c^3 ≤ 1/8 + a^4 + b^4 + c^4. [ads] + Ban đầu có 2020 viên sỏi để trong 1 chiếc túi. Có thể thực hiện công việc như sau: Bước 1: Bỏ đi 1 viên sỏi và chia túi này thành 2 túi mới. Bước 2: Chọn 1 trong 2 túi này sao cho túi đó có ít nhất 3 viên sỏi, bỏ đi 1 viên từ túi này và chia túi đó thành 2 túi mới, khi đó có 3 túi. Bước 3: Chọn 1 trong 3 túi này sao cho túi đó có ít nhất 3 viên sỏi, bỏ đi 1 viên từ túi này và chia túi đó thành 2 túi mới, khi đó có 4 túi. Tiếp tục quá trình trên. Hỏi sau một số bước có thể tạo ra trường hợp mà mỗi túi có đúng 2 viên sỏi hay không?
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 2021 sở GDĐT Nam Định (Đề 2)
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) là đề chung được sử dụng cho các thí sinh thi vào các lớp chuyên xã hội, đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) : + Tính bán kính đường tròn ngoại tiếp tam giác đều ABC, biết độ dài cạnh của tam giác là √3 cm. + Từ điểm A nằm ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AO cắt BC và đường tròn (O) lần lượt tại M và I. 1) Chứng minh rằng ABOC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. 2) Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC) và K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh rằng MD.MK = MA.MO. [ads] 3) Gọi E và F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB và DC. Chứng minh AF song song với ME. + Xét a, b, c là các số dương thỏa mãn 2a + 2b + 2c + ab + bc + ca = 24. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2.
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GDĐT Nam Định (Đề 1)
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) là đề chung được sử dụng cho tất cả các thí sinh tham dự kỳ thi, đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) : + Cho phương trình x^2 – (m + 1)x + 2m – 2 = 0 (với m là tham số). a) Chứng minh rằng với mọi giá trị của tham số m thì phương trình luôn có nghiệm. b) Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm dương phân biệt x1, x2 sao cho √(x1 + 2) – √(x2 + 2) = 1. [ads] + Từ điểm A nằm ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AC cắt BC và đường tròn (O) lần lượt tại M và I. Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC). 1) Chứng minh rằng ABC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. 2) Gọi E, F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB, DC. Chứng minh DM vuông góc với EF. 3) Gọi K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh KI là tia phân giác của AKM. + Tìm tất cả các giá trị của tham số m để đường thẳng y = x + 3m cắt parabol y = x^2 tại hai điểm phân biệt.