Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 Toán 10 năm 2022 - 2023 trường THPT Thủ Đức - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra đánh giá định kì cuối học kì 2 môn Toán 10 năm học 2022 – 2023 trường THPT Thủ Đức, thành phố Hồ Chí Minh. Trích dẫn Đề cuối học kì 2 Toán 10 năm 2022 – 2023 trường THPT Thủ Đức – TP HCM : + Một người muốn mua vé tàu ngồi từ Sài Gòn đi Phú Yên. Có 5 chuyến tàu mỗi ngày là SE8, SE22, SE6, SE4 và SE2. Trên mỗi tàu có hai loại vé ngồi khác nhau: Ngồi cứng hoặc ngồi mềm. Hỏi có bao nhiêu loại vé khác nhau người đó có thể lựa chọn? + Màn hình rađa tại trạm điều khiển không lưu được thiết lập hệ toạ độ Oxy với vị trí trạm có toạ độ O(0;0) và rađa có bán kính hoạt động là 500 km. Một máy bay khởi hành từ sân bay lúc 8 giờ. Cho biết sau t giờ máy bay có tọa độ được cho bởi 1 200 118 x t km y t km. Lúc mấy giờ thì máy bay vừa ra khỏi tầm hoạt động của rađa? (làm tròn t đến hàng phần trăm) A. 9 giờ 39 phút. B. 2 giờ 9 phút. C. 10 giờ 9 phút. D. 12 giờ 9 phút. + Hình dưới đây mô phỏng một trạm thu phát sóng đặt ở vị trí I (2;1) trên mặt phẳng tọa độ (đơn vị trên hai trục tọa độ là km). Giả sử vùng phủ sóng có dạng hình tròn được thiết kế với bán kính 3 km và bạn Việt đang ở vị trí điểm A(-4;-7). Tính quãng đường ngắn nhất để bạn Việt cần di chuyển để tới được vùng phủ sóng của trạm này.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 182 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 06 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 182, 183, 215, 216. Trích dẫn đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong các phương trình sau, có một phương trình là phương trình chính tắc của một elip. Hãy cho biết đó là phương trình nào? + Trong mặt phẳng toạ độ Oxy, cho hai điểm A(-2;6), B(1;2) và đường tròn (T) có phương trình (x – 3)^2 + (y + 1)^2 = 5. a) Viết phương trình đường tròn (C) có tâm A và đi qua B. b) Gọi d là tiếp tuyến của đường tròn (T) tại điểm M (4;-3) thuộc (T). Viết phương trình tổng quát của d. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình (x – 1)^2 + y^2 = 2 và đường thẳng ∆: x – y + m = 0. Tìm m để trên ∆ có duy nhất một điểm M mà từ đó có thể kẻ được hai tiếp tuyến MA, MB tới (C) (với A, B là các tiếp điểm) sao cho tam giác MAB đều. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho đường tròn (C): x^2 + y^2 – 4x + 6y + 3 = 0. a) Tìm tọa độ tâm và tính bán kính của đường tròn (C). b) Viết phương trình tiếp tuyến (d) với đường tròn (C), biết tiếp tuyến (d) song song với đường thẳng delta: 3x – y + 1 = 0. Tìm tọa độ tiếp điểm. [ads] + Trong mặt phẳng với hệ trục toạ độ Oxy, cho (E): 16x^2 + 25y^2 = 400. Tìm tọa độ các tiêu điểm F1 và F2; đỉnh, tính tiêu cự; độ dài các trục của (E). + Cho cosa = 4/5 với 0 độ < a < 90 độ và cosb = -12/13. Tính các giá trị: sina; tana; cot a và tính giá trị biểu thức: A = cos(a + b).cos(a – b).
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kì 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM có dạng đề tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(-1;2) và C(5;5). a) Viết phương trình tổng quát của đường thẳng d qua A và vuông góc BC. b) Viết phương trình đường tròn (C) có tâm là trọng tâm của tam giác ABC và (C) qua gốc tọa độ. c) Tìm điểm K trên đường thẳng d1: 2x – y + 1 = 0 cách trục hoành một đoạn bằng 5, biết rằng điểm K có tung độ dương. [ads] + Cho phương trình x^2 + (m + 2)x – m – 3 = 0 (1). Tìm tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt x1 và x2 sao cho x1^2 + x2^2 < 3 – 2x1x2.
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Lạc Long Quân Bến Tre
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Lạc Long Quân Bến Tre Bản PDF Đề thi học kỳ 2 Toán lớp 10 năm 2019 – 2020 trường THPT Lạc Long Quân – Bến Tre mã đề 02 gồm có 02 trang, đề có dạng trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 16 câu, chiếm 04 điểm, phần tự luận gồm 05 câu, chiếm 06 điểm, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán lớp 10 năm 2019 – 2020 trường THPT Lạc Long Quân – Bến Tre : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;3) và B(-4;5) và đường thẳng d: 4x – 3y + 5  = 0. a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường tròn đường kính AB. c) Tìm tọa độ của điểm M thuộc đường thẳng d sao cho độ dài của đoạn AM nhỏ nhất. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm A(-1;4) và đường thẳng d có phương trình 3x + 4y – 5 = 0, khoảng cách từ điểm A đến đường thẳng d bằng? + Trong mặt phẳng tọa độ Oxy, cho đường tròn có phương trình: x^2 + y^2 – 4x + 2y + 3 = 0, bán kính của đường tròn bằng?