Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Nghệ An

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh lớp 10 THPT môn Toán Nghệ An 2022 - 2023 Đề thi thử tuyển sinh lớp 10 THPT môn Toán Nghệ An 2022 - 2023 Chào mừng đến với đề thi thử tuyển sinh lớp 10 THPT môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo Nghệ An. Đề thi bao gồm 05 bài toán dạng tự luận, được thi sinh thực hiện trong thời gian 120 phút (không tính thời gian phát đề). Kỳ thi sẽ diễn ra vào thứ Tư, ngày 08 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích từ đề tuyển sinh: Cho phương trình \(x^2 + 3x - 1 = 0\) có hai nghiệm phân biệt \(x_1\) và \(x_2\). Hãy tính giá trị của biểu thức T. Trong SEA Games 31 tại Việt Nam, thú sao la được chọn làm linh vật. Một phân xưởng được giao sản xuất 420 thú nhồi bông sao la. Nếu mỗi giờ sản xuất thêm 5 thú nhồi bông sao la thì thời gian hoàn thành công việc sẽ rút ngắn 2 giờ. Hãy tính thời gian dự định của phân xưởng. Cho tam giác vuông \(ABC\) tại \(C\), đường cao \(CK\) và đường phân giác trong \(BD\). Gọi \(D\) là đường thẳng vuông góc với \(AC\) cắt \(CK\), \(AB\) lần lượt tại \(H\) và \(I\). Hãy chứng minh các phát biểu liên quan đến tứ giác \(CDKI\) và \(AD.AC = DH.AB\), cũng như chứng minh \(B, N, F\) thẳng hàng với nhau. Hy vọng rằng đề thi thử này sẽ giúp các em học sinh lớp 9 Nghệ An ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập đề tuyển sinh lớp 10 môn Toán sở GDĐT Hà Nội (từ 1998 đến 2020)
Tài liệu gồm 68 trang, được tổng hợp và biên soạn bởi thầy Trịnh Văn Luân, tuyển tập 21 đề tuyển sinh vào lớp 10 môn Toán sở GD&ĐT Hà Nội (từ năm 1998 đến năm 2020), có đáp án và lời giải chi tiết. Đề số 1. Đề thi vào 10 thành phố Hà Nội năm 1998. Đề số 2. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 1999-2000. Đề số 3. Đề thi vào 10 thành phố Hà Nội năm 2000. Đề số 4. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2001-2002. Đề số 5. Đề thi vào 10 thành phố Hà Nội năm 2002. Đề số 6. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2003-2004. Đề số 7. Đề thi Toán vào lớp 10 năm học 2004-2005, Hà Nội. Đề số 8. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2006. Đề số 9. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2007. Đề số 10. Đề thi vào 10, Sở GD&ĐT Hà Nội năm 2008. Đề số 11. Đề thi vào lớp 10, Sở GDHN, năm 2009 – 2010. Đề số 12. Đề thi vào lớp 10 – TP Hà Nội năm 2010. Đề số 13. Đề tuyển sinh vào 10 SGD Hà Nội 2011. Đề số 14. Đề thi vào lớp 10, SGD Hà Nội 2012. Đề số 15. Đề thi vào lớp 10, SGD Hà Nội 2013. Đề số 16. Đề thi vào lớp 10, SGD Hà Nội 2014. Đề số 17. Đề thi vào lớp 10, SGD Hà Nội 2015. Đề số 18. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2016-2017. Đề số 19. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2017-2018. Đề số 20. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2018-2019. Đề số 21. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2019-2020.
Đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020, nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán sắp tới. Trích dẫn đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang: + Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E. 1. Chứng minh tứ giác BCEM nội tiếp. 2. Tính AM.AE theo R. 3. Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp. [ads] + (Giải bài toán sau bằng cách lập phương trình bậc hai) Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe. + Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2. 1. Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ. 2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi. 3. Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1.
Đề minh họa thi vào 10 môn Toán năm 2020 - 2021 sở GDĐT Thái Nguyên
Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 tại tỉnh Thái Nguyên chuẩn bị cho kỳ thi vượt cấp quan trọng sắp tới. Đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên có dạng tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho đường tròn (O), đường kính AB. Lấy điểm C nằm trên đường tròn (C khác A, C khác B). Các tiếp tuyến của đường tròn (O) tại A và tại C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên đường thẳng AB. I là giao điểm của BD và CH. Chứng minh rằng Cl = HI. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung CD của hai đường tròn (C thuộc (O), D thuộc (O’)). Lấy hai điểm E, F lần lượt thuộc các đường tròn (O), (O’) sao cho ba điểm E, B, F thẳng hàng (B nằm giữa E và F, E khác B, F khác B) và EF song song với CD. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng DA với EF và CA với EF. K là giao điểm của hai đường thẳng EC và FD. Chứng minh rằng: a. Tam giác KCD = tam giác BCD. b. KP = KQ. + Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước?
Đề minh họa Toán tuyển sinh lớp 10 năm 2020 - 2021 sở GDĐT Khánh Hòa
Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề thi minh họa môn Toán tuyển sinh vào lớp 10 năm học 2020 – 2021, nhằm giúp các em học sinh nắm được cấu trúc, hình thức ra đề, để có phương hướng ôn tập phù hợp, nhằm đạt kết quả cao nhất. Đề minh họa Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Khánh Hòa : + Để chuẩn bị cho một xe hàng từ thiện chống dịch COVID-19, hai thanh niên cần chuyển một số lượng thực phẩm lên xe. Nếu người thứ nhất chuyển xong một nửa số lượng thực phẩm, và sau đó người thứ hai chuyến hết số còn lại lên xe thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 1 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số lượng thực phẩm lên xe là 4/3 giờ. Hỏi nếu làm riêng một mình thì mỗi người chuyển hết số lượng thực phẩm đó lên xe trong thời gian bao lâu? [ads] + Cho đường tròn tâm O, đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm C (C khác A). Từ C vẽ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Kẻ DK vuông góc với AB (K thuộc AB), CB cắt đường tròn (O) tại điểm thứ hai là M và cắt DK tại N. Chứng minh rằng: a) Tứ giác AMNK nội tiếp đường tròn. b) AC^2 = CM.CB. c) MAD = OCB. d) N là trung điểm của DK. + Không dùng máy tính cầm tay: a) Giải phương trình x^2 – 6x + 5 = 0. b) Rút gọn biểu thức M = (3√50 – 5√18 + 3√8)√2.