Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm, tích phân và ứng dụng mức độ vận dụng và vận dụng cao có đáp án

Tài liệu gồm 103 trang, tuyển chọn các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng mức độ vận dụng và vận dụng cao có đáp án, giúp học sinh lớp 12 rèn luyện nâng cao khi học chương trình Toán 12 phần Giải tích chương 3 và ôn luyện điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán, kỳ thi tuyển sinh vào các trường Đại học, Cao đẳng. MỤC LỤC : Chương 3. Nguyên Hàm – Tích Phân 1. Bảng đáp án 8. Bảng đáp án 13. §1 – Nguyên hàm và tích phân của hàm số f(x) và f0(x) 13. Dạng 1. Dạng tích liên quan đến f(x) và f0(x) 13. Dạng 2. Dạng tổng liên quan đến f(x) và f0(x) 13. Bảng đáp án 17. §2 – Nguyên Hàm 2.2 18. Bảng đáp án 23. §3 – Công thức tính nhanh diện tích hình phẳng 23 . A Các công thức tính nhanh 23 . B Bài tập 29. Bảng đáp án 34. Bảng đáp án 41. Bảng đáp án 45. §4 – Giá trị lớn nhất và giá trị nhỏ nhất của tích phân 45. Bảng đáp án 49. §5 – Tính diện tích hình phẳng dựa trên đồ thị hàm số phần 1 50. Bảng đáp án 61. §6 – Tính diện tích hình phẳng dựa trên đồ thị hàm số phần 2 61. Bảng đáp án 68. §7 – Ứng dụng tích phân tính diện tích hình phẳng phần 1 68. Bảng đáp án 82. §8 – Ứng dụng tích phân tính diện tích hình phẳng phần 2 82. Bảng đáp án 92. §9 – Bài toán thực tế diện tích hình phẳng 92. Bảng đáp án 100.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm tích phân đặc biệt và nâng cao
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân đặc biệt và nâng cao, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Một số dạng tích phân đặc biệt. + Mệnh đề 1: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a a 0 f (x) dx 2 f (x) dx. + Mệnh đề 2: Nếu f(x) là hàm số lẻ và liên tục trên đoạn [−a;a] thì a a f (x) dx 0. + Mệnh đề 3: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a x a 0 f(x) dx f (x) dx m 1. + Mệnh đề 4: Nếu f(x) là hàm số liên tục trên [0;1] thì 2 2 0 0 f (sinx) dx f (cosx) dx. 2. Một số dạng tích phân vận dụng cao. + Dạng 1. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 2. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 3. Bài toán tổng quát. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích phân hàm hữu tỉ và hàm lượng giác
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân hàm hữu tỉ và hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.
Chuyên đề trắc nghiệm công thức từng phần tính tích phân
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức từng phần tính tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. Dạng 1: Sử dụng công thức tích phân từng phần. Dạng 2: Tích phân từng phần với hàm ẩn. Dạng 3: Sử dụng bất đẳng thức tích phân. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.