Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 3 năm 2023 - 2024 phòng GDĐT Lạng Giang - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lạng Giang, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 17 tháng 05 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 3 năm 2023 – 2024 phòng GD&ĐT Lạng Giang – Bắc Giang : + Với sự phát triển của khoa học kỹ thuật hiện nay, nguời ta tạo ra nhiều mẫu xe lăn đẹp và tiện dụng cho người khuyết tật. Công ty A đã sản xuất ra những chiếc xe lăn cho nguời khuyết tật với số vốn ban đầu là triệu đồng. Chi phí để sản xuất ra một chiếc xe lăn là đồng. Giá bán ra mỗi chiếc là đồng. Viết hàm số y biểu diễn tổng số tiền (triệu đồng) đã đầu tư đến khi sản xuất ra được chiếc xe lăn (gồm vốn ban đầu và chi phí sản xuất) được là? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Nhân dịp ngày nghỉ lễ 30/4 và 01/5. Một cửa hàng ở Lạng Giang có chương trình khuyến mại giảm giá cho 15% cho mặt hàng thứ nhất và 20% cho mặt hàng thứ hai trở đi. Một người mua hai loại hàng và phải trả tổng cộng 2 17 triệu đồng, kể cả thuế giá trị gia tăng (VAT) với mức 10% đối với loại hàng loạt hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 2 18 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng? + Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với O (A, B là hai tiếp điểm). Vẽ cát tuyến MCD với O sao cho MC MD và tia MD nằm giữa hai tia MA và MO. Gọi E là trung điểm của CD. 1. Chứng minh tứ giác MEOB nội tiếp. 2. Kẻ AB cắt MD tại I, cắt MO tại H. Chứng minh EA EB EI EM và MHC OCE. 3. Từ C kẻ đường thẳng vuông góc với OA cắt AE tại K. Chứng minh IK AC.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn trên toàn quốc
Sách gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn từ năm 2000 đến nay. Các đề thi đều có lời giải chi tiết .
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. + Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. [ads] b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. + Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2