Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Cà Mau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 21 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau : + Ngày của Cha hay còn gọi là Father’s Day là ngày để con bày tỏ lòng biết ơn và hiếu thảo đối với cha mình. Tương tự như Ngày của Mẹ, ngày của Cha cũng không cố định cụ thể mà được quy ước chọn ngày chủ nhật tuần thứ 3 của tháng 6 hàng năm. Nhân dịp lễ “Ngày của Cha – 19/6/2022”, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834 700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng ba của mình; Duy tính nhẩm: cùng ở siêu thị A, cùng số lượng, cùng mẫu mã nhưng nếu mua vào ngày 18/6/2022 (ngày mà siêu thị A không có khuyến mãi giảm giá các mặt hàng) thì chỉ với số tiền tiết kiệm được là 1 025 000 đồng bạn ấy không đủ tiền để mua hai món hàng này. Em hãy cho biết, bạn Duy tính nhẩm như vậy có đúng không? Biết rằng, nếu không giảm giá thì tiền mua mỗi đôi giày gấp 11 lần tiền mua mỗi chiếc cà vạt. + Cho phương trình: x2 + kx + 2 = 0 (k là tham số). a) Tìm k để phương trình có nghiệm kép, tìm nghiệm kép đó. b) Tìm k để phương trình có hai nghiệm x1, x2 thỏa mãn? + Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Kẻ hai tiếp tuyến AB, AC với đường tròn (O;R) (B và C là các tiếp điểm), tia AC cắt BC tại I. Điểm H thuộc đoạn thẳng BI (H khác B và H khác I). Đường thẳng d vuông góc với OH tại H; d cắt AB và AC lần lượt tại P và Q. a) Chứng minh tứ giác OHBP nội tiếp đường tròn. b) Chứng minh rằng: OP = OQ. c) Khi H là trung điểm của đoạn thẳng BI, tính độ dài đoạn thẳng BC và diện tích của OPQ theo R.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong Nam Định Đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong Nam Định Sytu xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định. Đề thi bao gồm đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (công bố bởi sở Giáo dục và Đào tạo tỉnh Nam Định). Trích đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định: Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Đường phân giác trong của BAC cắt đường tròn (O) tại D D A. Trên cung nhỏ AC của đường tròn (O) lấy điểm G khác C sao cho AG GC; một đường tròn có tâm là K đi qua A, G và cắt đoạn thẳng AD tại điểm P nằm bên trong tam giác ABC. Đường thẳng GK cắt đường tròn (O) tại điểm M M G. Xét hai tập hợp A B khác ∅ thỏa mãn A B và A B. Biết rằng A có vô hạn phần tử và tổng của mỗi phần tử thuộc A với mỗi phần tử thuộc B là phần tử thuộc B. Gọi x là phần tử bé nhất thuộc B thỏa mãn x ≠ 1. Hãy tìm x. Cho 1 2 12 pp p … là các số nguyên tố lớn hơn 3. Chứng minh rằng 22 2 1 2 12 pp p chia hết cho 12. Bạn có thể tải file WORD (dành cho quý thầy, cô) để xem đầy đủ nội dung đề thi.
Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1)
Nội dung Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1) Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1) Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1) Trong đề thi này, chúng ta sẽ cùng tìm hiểu và giải quyết các bài toán thú vị có trong đề thi vào 10 môn Toán (chung) năm 2021 - 2022 của trường chuyên Lê Hồng Phong Nam Định. Hãy cùng Sytu đến với các câu hỏi và bài toán thú vị sau: - Cho tam giác nhọn ABC, AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. Chúng ta sẽ chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. Sau đó, chúng ta sẽ chứng minh IK song song với AP và HMC HAN. - Tiếp theo, chúng ta sẽ tìm tất cả các giá trị của tham số m để hai đường thẳng 2ymx + m (m ≠ 0) và yx 9 2 song song. - Cuối cùng, chúng ta sẽ tính thể tích của hình nón có đáy bằng 5cm và bán kính đáy 3cm. Đề thi này đòi hỏi sự tỉ mỉ và chính xác trong các phép tính và bài toán hình học. Đề thi này là cơ hội để các em học sinh thể hiện kiến thức và kỹ năng của mình. Hãy cùng nhau học tập và vượt qua thách thức này nhé!
Đề thi thử Toán vào lần 1 năm 2022 2023 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào lần 1 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường Lương Thế Vinh Hà Nội Vào ngày ... tháng 01 năm 2022, trường THCS & THPT Lương Thế Vinh tại thành phố Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán cho năm học 2022 - 2023 lần đầu tiên. Đề thi thử Toán lần 1 năm 2022 - 2023 của trường Lương Thế Vinh Hà Nội gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài của học sinh là 90 phút (không tính thời gian phát đề).
Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 tại trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 26 tháng 03 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. 3. Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. - Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. - Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. - Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất. Hy vọng rằng đề thi thử Toán này sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!