Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Hùng Vương - Gia Lai lần 2

Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Hùng Vương – Gia Lai lần 2 mã đề chuẩn gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi được biên soạn bám sát đề minh họa Toán 2018 của Bộ Giáo dục và Đào tạo, nhằm giúp các em làm quen và thử sức với kỳ thi THPT Quốc gia, để từ đó rút ra những kinh nghiệm và có hướng ôn tập phù hợp, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi thử THPTQG 2018 môn Toán : + Giả sử rằng, trong Đại hội thể dục thể thao tỉnh Gia Lai năm 2018 có 16 đội bóng đăng ký tham gia giải, được chia thành 4 bảng A, B, C, D, mỗi bảng gồm 4 đội. Cách thức thi đấu như sau: Vòng 1: Các đội trong mỗi bảng thi đấu vòng tròn một lượt, tính điểm và chọn ra đội nhất của mỗi bảng. Vòng 2 (bán kết): Đội nhất bảng A gặp đội nhất bảng C; Đội nhất bảng B gặp đội nhất bảng D. Vòng 3 (chung kết): Tranh giải 3: Hai đội thua trong bán kết; tranh giải nhất: Hai đội thắng trong bán kết. Biết rằng tất cả các trận đấu đều diễn ra trên sân vận động Pleiku vào các ngày liên tiếp, mỗi ngày 4 trận. Hỏi Ban tổ chức cần mượn sân vận động trong bao nhiêu ngày? [ads] + Anh Nam đã tiết kiệm được x triệu đồng và dùng số tiền đó để mua một căn nhà nhưng thực tế giá căn nhà là 1,6 x triệu đồng. Anh Nam quyết định gửi tiết kiệm vào ngân hàng với lãi suất 7% / năm theo hình thức lãi kép và không rút trước kỳ hạn. Hỏi sau ít nhất bao nhiêu năm anh Nam có đủ số tiền cần thiết (bao gồm cả vốn và lãi) để mua căn nhà đó? Giả định trong suốt thời gian gửi, lãi suất không đổi, anh Nam không rút tiền ra và giá bán căn nhà đó không thay đổi. + Cho tứ diện ABCD có hai cặp cạnh đối vuông góc. Mệnh đề nào sau đây đúng ? A. Tứ diện có ít nhất một mặt là tam giác nhọn. B. Tứ diện có ít nhất hai mặt là tam giác nhọn. C. Tứ diện có ít nhất ba mặt là tam giác nhọn. D. Tứ diện có cả bốn mặt là tam giác nhọn.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm liên trường THPT - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Ninh Bình (mã đề 132). Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm liên trường THPT – Ninh Bình : + Trên tập hợp số phức, xét phương trình 2 z m z m 2 45 2016 80 0 (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đó có hai nghiệm phân biệt 1 2 z z sao cho 1 2 z z? + Trong không gian Oxyz, cho mặt cầu 2 S x y z 2 5 24 cắt mặt phẳng P x y 4 0 theo giao tuyến là đường tròn C. Điểm M thuộc C sao cho khoảng cách từ M đến A 4 12 1 nhỏ nhất có tung độ bằng? + Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn của số phức z thỏa mãn z i i z 2 3 là A. Đường tròn có phương trình 2 2 x y 4. B. Đường thẳng có phương trình x y 2 1 0. C. Đường thẳng có phương trình x y 2 3 0. D. Đường elip có phương trình 2 2 x y 4 4.
Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 3 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi – Hải Dương : + Cho hàm số bậc ba 3 2 f x ax bx cx d có hai điểm cực trị x = −1 và x = 3. Hình phẳng giới hạn bởi đồ thị hàm số y f x và đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y f x có diện tích bằng 12. Giá trị f f (1) (3) bằng? + Trong hệ tọa độ Oxyz cho điểm A thuộc mặt cầu 2 2 1 (5) 1 S x y z và điểm B thuộc mặt cầu 2 2 9 S x y z. Điểm M thay đổi trên mặt phẳng 2 2 15 0 P x y z. Giá trị nhỏ nhất của biểu thức T MA MB thuộc khoảng nào sau đây? + Cho khối chóp S ABCD có đáy ABCD là hình vuông, SA ABCD và BD a 3 thể tích khối chóp S ABCD bằng 3 2 a (tham khảo hình vẽ bên dưới). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng?
Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 lần 2 môn Toán cụm trường THPT và trung tâm GDTX huyện Thuận Thành, tỉnh Bắc Ninh; đề thi có đáp án mã đề Đề 101 Đề 102 Đề 103 Đề 104 Đề 105 Đề 106 Đề 107 Đề108 Đề 109 Đề 110 Đề 111 Đề 112 Đề 113 Đề 114 Đề 115 Đề 116 Đề 117 Đề 118 Đề 119 Đề 120 Đề 121 Đề 122 Đề 123 Đề 124; kỳ thi được diễn ra vào chiều thứ Sáu ngày 09 tháng 06 năm 2023. Trích dẫn Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành – Bắc Ninh : + Cho hàm số 432 y f x ax bx cx dx e a b c d e R và 3 y gx x 4 3 có đồ thị như hình vẽ bên. Biết hai đồ thị y f x y gx cắt nhau tại 4 điểm phân biệt có hoành độ 1234 xx thỏa mãn 14 3 xx và xx 14 2 3 4 0 đồng thời diện tích phần gạch chéo trên hình bằng 7 10. Hỏi diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx hx a b c d e 4 nằm trong khoảng nào dưới đây? + Cho hình trụ tròn xoay có hai đáy là hai hình tròn(O;4) và (O′;4). Biết rằng tồn tại dây cung AB của đường tròn O sao cho ∆O’AB là tam giác đều và mặt phẳng (O’AB) hợp với đáy một góc 0 30. Tính diện tích xung quanh xq S của hình nón có đỉnh O′ đáy là hình tròn (O;4). + Trong không gian Oxyz cho hai đường thẳng 2 1 2 20 x xm d y d ym tR zt z t và điểm K (8;-1;0). Biết rằng tồn tại đường thẳng ∆ đi qua điểm K vuông góc với 2 đường 1 2 d d đồng thời thỏa mãn d d d d d Oz (1 2 ∆). Hỏi có tất cả bao nhiêu giá trị thực của m thỏa mãn?
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Hải Đảo - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT Hải Đảo, tỉnh Quảng Ninh; đề thi có đáp án trắc nghiệm mã đề 201. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Hải Đảo – Quảng Ninh : + Trên tập hợp các số phức, cho biết phương trình 2 4 0 c z z d (với c d và phân số c d tối giản) có hai nghiệm 1 2 z z. Gọi A B lần lượt là các điểm biểu diễn hình học của 1 2 z z trên mặt phẳng Oxy. Biết tam giác OAB đều, giá trị của biểu thức P cd 2 5 bằng? + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và AC a. Biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy; góc giữa đường thẳng SD và mặt phẳng đáy bằng 0 60. Khoảng cách giữa hai đường thẳng AD và SC bằng? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình 1 2 1 x t y t z t và điểm A(1;2;3). Mặt phẳng (P) chứa d sao cho dAP lớn nhất. Khi đó tọa độ vectơ pháp tuyến của mặt phẳng (P) là?