Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2018 lần 1 môn Toán liên trường THPT - Nghệ An

Đề thi thử THPT Quốc gia 2018 lần 1 môn Toán liên trường THPT – Nghệ An được biên soạn bám sát cấu trúc đề tham khảo môn Toán 2018 do Bộ Giáo dục và Đào tạo phát hành, đây là đề thi thử Toán được sử dụng cho nhiều trường THPT tại tỉnh Nghệ An nhằm kiểm tra chất lượng học sinh và tạo điều kiện cho các em rèn luyện, ôn tập kỳ thi THPT Quốc gia 2018, kỳ thi diễn ra vào chiều ngày 09/02/2018. Đề thi thử gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử THPT Quốc gia môn Toán : + Một phiếu điều tra về vấn đề tự học của học sinh gồm 10 câu hỏi trắc nghiệm, mỗi câu có 4 lựa chọn để trả lời. Khi tiến hành điều tra, phiếu thu lại được coi là hợp lệ nếu người được hỏi trả lời đủ 10 câu hỏi, mỗi câu chỉ chọn một phương án. Hỏi cần tối thiểu bao nhiêu phiếu hợp lệ để trong số đó luôn có ít nhất hai phiếu trả lời giống hệt nhau cả 10 câu hỏi? + Người ta cần sản xuất một chiếc cốc thủy tinh có dạng hình trụ không có nắp với đáy cốc và thành cốc làm bằng thủy tinh, phần đáy cốc dày đều 1,5cm và thành xung quanh cốc dày đều 0,2cm (như hình vẽ). Biết rằng chiều cao của chiếc cốc là 15cm và khi ta đổ 180ml nước vào thì cốc đầy. Nếu giá thủy tinh thành phẩm được tính là 500đ/1cm3 thì giá tiền thủy tinh cần để sản xuất chiếc cốc đó gần nhất với số nào sau đây? [ads] + Cho hai đường thẳng phân biệt a, b và mặt phẳng (a). Giả sử a // (a) và b // (a). Mệnh đề nào sau đây là đúng? A. a và b không có điểm chung. B. a và b hoặc song song hoặc chéo nhau hoặc cắt nhau. C. a và b chéo nhau. D. a và b hoặc song song hoặc chéo nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Hữu Cầu - TP.HCM
Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Hữu Cầu – TP.HCM có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 5 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng d. Câu 3: a) Tìm tọa độ điểm M biểu diễn số phức z trong mặt phẳng tọa độ Oxy. b) Giải phương trình logarit. Câu 4: Tính tích phân bằng phương pháp đổi biến rồi từng phần. Câu 5: Viết phương trình đường thẳng d đi qua A và vuông góc với (P). Tìm tọa độ điểm B đối xứng với A qua (P). Câu 6 a) Tính giá trị của biểu thức lượng giác. b) Chọn ngẫu nhiên ba số từ tập hợp số. Tính xác suất để ba số được chọn có tổng là một số lẻ. Câu 7: Tính theo a thể tích của khối chóp S.AMCD và khoảng cách giữa hai đường thẳng DM, SC. Câu 8: Tìm tọa độ điểm trong hình học Oxy. Câu 9: Giải bất phương trình vô tỉ. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến dạng đối xứng.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Trực Ninh - Nam Định lần 1
Đề thi thử THPT Quốc gia 2016 môn Toán trường Trực Ninh – Nam Định lần 1 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 9 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2 a) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn cho trước. b) Tìm m để hàm số đạt cực tiểu tại điểm cho trước. Câu 3: a) Giải phương trình logarit bằng cách đưa về cùng cơ số. b) Giải phương trình lượng giác. Câu 4: Tính tích phân hàm chứa căn thức. Câu 5: Viết phương trình mặt phẳng (P) song song với trục Ox vuông góc với mặt phẳng (a) và tiếp xúc với mặt cầu (S). Câu 6: Lấy ngẫu nhiên một đề trong bộ đề trên. Tính xác suất để đề thi lấy ra là một đề thi tốt. Câu 7: Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa A’ I và AC với I là trung điểm AB. Câu 8: Tìm tọa độ các điểm A, B là các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình vô tỉ, có thể sử dụng phương pháp hàm số. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Bình Phước
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Bình Phước có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc 3 trên đoạn cho trước. Câu 3: a) Cho số phức z thỏa mãn điều kiện cho trước, yêu cầu tìm số phức w. b) Giải phương trình bậc 2 của logarit. Câu 4: Tính tích phân bằng phương pháp tích phân từng phần. Câu 5: Tìm toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d. Viết phương trình mặt cầu tâm M tiếp xúc với d. Câu 6: a) Tính giá trị của biểu thức lượng giác biết mối liên hệ giữa sina và cosa b) Bài toán tính xác suất. Câu 7: Tính thể tích hình chóp với đáy là hình thang cân và khoảng cách giữa 2 đường thẳng chéo nhau trong không gian. Câu 8: Tìm tọa độ các đỉnh của tam giác ABC và viết phương trình của đường tròn tâm I trong hình học tọa độ Oxy. Câu 9: a) Giải phương trình vô tỉ có chứa mẫu khá phức tạp. b) Bài toán thực tế trong kinh tế – sản xuất. Đây là một dạng bài mới đang được đưa ra mổ xẻ trong thời gian gần đây và hứa hẹn xuất hiện trong đề thi sắp tới vì tính ứng dụng vào thực tiễn của nó. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến dạng đối xứng giữa các biến, trong đó các biến là độ dài các cạnh của một tam giác.
Đề thi thử Quốc gia 2016 môn Toán trường THPT chuyên Vĩnh Phúc lần 5
Đề thi thử Quốc gia 2016 môn Toán trường THPT chuyên Vĩnh Phúc lần 5 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 7 trang: Câu 1: Khảo sát hàm đa thức bậc 3. Câu 2: Tìm miền giá trị của hàm số. Đây là 1 dạng câu hỏi khá mới lạ trong các đề thi thử. Câu 3: a) Bài tập số phức. b) Giải phương trình logarit bằng cách đưa về phương trình bậc 2. Câu 4: Tính tích phân bằng phương pháp đổi biến, một câu tích phân khá hay bởi không dễ để nhận ra biểu thức cần đặt. Câu 5: Viết phương trình mặt cầu và tìm tọa độ tiếp điểm. Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Bài toán tính xác suất chọn người. Câu 7: Tính thể tích hình chóp với đáy là hình thoi và khoảng cách giữa 2 đường thẳng chéo nhau trong không gian. Câu 8: Hình học tọa độ phẳng liên quan đến tam giác và đường tròn. Câu 9: Hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến dạng đối xứng giữa các biến, trong đó các biến là độ dài các cạnh của một tam giác.