Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Hoằng Thanh, huyện Hoằng Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh – Thanh Hóa : + Cho hai đường thẳng (d1): y = –x + m + 2 và (d2): y = (m2 – 2)x + 3. Tìm m để (d1) và (d2) song song với nhau. + Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của CD, kẻ AH vuông góc với MO tại H. a) Tính OH.OM theo R. b) Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn. c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R). + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức: P = 1 + 3/(xy + yz + xz).

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Đắk Lắk
Đề Toán tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Đắk Lắk được biên soạn vào tổ chức thi vào ngày 08/06/2018 nhằm giúp các trường THPT tại tỉnh Đắk Lắk có cở sở để tuyển chọn các em học sinh phù hợp với tiêu chí của trường để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 chuyên Lê Quý Đôn - Bà Rịa - Vũng Tàu
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh có 120 phút để làm bài, kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2018, đề thi có lời giải chi tiết .