Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội

Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán trường Phùng Khắc Khoan Hà Nội Đề thi HSG lớp 10 môn Toán trường Phùng Khắc Khoan Hà Nội Để tìm ra các em học sinh lớp 10 có năng khiếu và thành tích xuất sắc trong môn Toán, trường THPT Phùng Khắc Khoan đã tổ chức kỳ thi chọn học sinh giỏi cấp trường. Đề thi HSG Toán lớp 10 năm 2018 – 2019 của trường gồm 6 bài toán được biên soạn theo hình thức tự luận. Thời gian làm bài là 150 phút, không tính thời gian giám thị coi thi phát đề. Đề thi cung cấp lời giải chi tiết và thang chấm điểm cho từng bài toán. Trích dẫn đề thi HSG Toán lớp 10 năm 2018 – 2019 trường Phùng Khắc Khoan Hà Nội: + Bài toán 1: Tìm m để đường thẳng y = -2x – m cắt đồ thị của hàm số y = x^2 + x – 1 tạo ra hai điểm phân biệt A, B sao cho tam giác OAB vuông tại gốc tọa độ O. + Bài toán 2: Xác định hệ thức liên hệ giữa cạnh AB và AC của tam giác ABC để AM và CN vuông góc với nhau, với điều kiện MC = -2MB và NA = -1/2.NB. + Bài toán 3: Tính giá trị của tanB trong tam giác ABC có cạnh BC = a, CA = b, BA = c và diện tích S = b^2 - (a - c)^2.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.