Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Trong đề thi chọn học sinh giỏi môn Toán lớp 8 THCS năm học 2022 - 2023 do phòng Giáo dục và Đào tạo thành phố Ninh Bình tổ chức, có những bài toán thú vị và đầy thách thức dành cho các em học sinh lớp 8. Trong số đó, một vài bài toán đặc biệt như sau: **Bài toán 1:** Một vật thể chuyển động từ A đến B theo cách sau: đi được 4m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây... Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2m/giây. Hãy tính khoảng cách từ A đến B. **Bài toán 2:** Cho hình vuông ABCD. Qua A kẻ một đường thẳng cắt đoạn thẳng BC tại P (P khác B, P khác C) và cắt tia DC tại Q. Kẻ đường thẳng vuông góc với AP tại A, đường thẳng này cắt tia CB tại R và cắt tia CD tại S. Tia SP cắt QR tại H. Gọi M, N lần lượt là trung điểm của QR và SP. Chứng minh rằng: a) Tam giác AQR và APS là các tam giác vuông cân. b) Tứ giác AMHN là hình chữ nhật. c) MN là đường trung trực của đoạn thẳng AC. **Bài toán 3:** Cho tam giác ABC có góc ABC = 30°. Dựng bên ngoài tam giác ABC tam giác ACD vuông cân tại D. Chứng minh rằng 2BD² = BA² + BC² + BA.BC. Đây là những bài toán thú vị và mang tính logic cao, chắc chắn sẽ giúp các em học sinh lớp 8 rèn luyện tư duy và kỹ năng giải quyết vấn đề một cách hiệu quả. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 8 năm 2017 - 2018 phòng GDĐT Duy Xuyên - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4 m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây, … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2 m/giây. Tính khoảng cách từ A đến B. + Cho tam giác ABC vuông tại A, phân giác BD. Gọi P, Q, R lần lượt là trung điểm của BD, BC, DC. a) Chứng minh APQR là hình thang cân. b) Biết AB = 6cm, AC = 8cm Tính độ dài của AR. + Cho hình bình hành ABCD. Một đường thẳng qua B cắt cạnh CD tại M, cắt đường chéo AC tại N và cắt đường thẳng AD tại K. Chứng minh.
Đề giao lưu học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BH.BE + CH.CF = BC2. b) Chứng minh: H cách đều ba cạnh tam giác DEF. c) Trên đoạn HB, HC tương ứng lấy điểm M, N tùy ý sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định. + Tìm các giá trị của x để M có giá trị là số nguyên.
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vẽ tia Cx sao cho BCX = 1/2.BAC. Cx cắt AD tại E; I là trung điểm DE. Chứng minh rằng : a) ΔABD đồng dạng với ΔCED. b) AE2 > AB.AC. c) 4AB.AC = 4AI2 – DE2. d) Trung trực của BC đi qua E. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho a, b, c là 3 số dương thỏa mãn: 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 2. Tìm giá trị lớn nhất của biểu thức Q = abc.