Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm so sánh phân số, hỗn số dương

Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm so sánh phân số, hỗn số dương Bản PDF Sytu xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề so sánh phân số và hỗn số dương. Tài liệu này được tổ chức và phân loại theo độ khó từ cơ bản đến nâng cao, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải các bài toán liên quan.

I. Quy đồng mẫu nhiều phân số:
Để quy đồng mẫu hai hoặc nhiều phân số có mẫu số dương, ta cần tìm bội chung nhỏ nhất của các mẫu số để làm mẫu chung. Sau đó, nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng để đưa về cùng mẫu.

II. So sánh hai phân số:
1. So sánh hai phân số có cùng mẫu: Phân số nào có tử lớn hơn sẽ lớn hơn.
2. So sánh hai phân số không cùng mẫu: Viết chúng dưới dạng cùng mẫu rồi so sánh tử với nhau.

III. Hỗn số dương:
1. Hỗn số: Là số có dạng a b c, trong đó a là phần nguyên, b c là phần phân số.
2. Chuyển từ phân số sang hỗn số: Thực hiện phép chia để viết phân số lớn hơn 1 dưới dạng hỗn số.
3. Chuyển từ hỗn số sang phân số: Thực hiện phép nhân để đưa hỗn số về dạng phân số.

Bài tập trắc nghiệm trong tài liệu được chia thành bốn mức độ từ nhận biết đến vận dụng cao. Đây là cơ hội tuyệt vời để các em tự kiểm tra và rèn luyện kỹ năng giải bài toán liên quan đến so sánh phân số và hỗn số.

Nếu quý thầy cô quan tâm, vui lòng tải file WORD để có thêm thông tin chi tiết và hướng dẫn giải chi tiết. Hy vọng rằng tài liệu này sẽ giúp ích cho việc học tập của các em học sinh lớp 6. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề số tự nhiên theo chương trình SGK Toán 6 mới
Tài liệu gồm 117 trang, tóm tắt lý thuyết, bài tập trắc nghiệm và bài tập tự luận chuyên đề số tự nhiên theo chương trình SGK Toán 6 mới (Kết Nối Tri Thức Với Cuộc Sống, Cánh Diều, Chân Trời Sáng Tạo), đầy đủ các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ 1: TẬP HỢP. CHUYÊN ĐỀ 2: CÁC PHÉP TÍNH TRONG TẬP HỢP SỐ TỰ NHIÊN. CHUYÊN ĐỀ 3: LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN. CHUYÊN ĐỀ 4: TÍNH CHẤT CHIA HẾT VÀ DẤU HIỆU CHIA HẾT. CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ VÀ HỢP SỐ. PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ. CHUYÊN ĐỀ 6: ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT. BỘI CHUNG VÀ BỘI CHUNG NHỎ NHẤT.
Chuyên đề tính tổng dãy số có quy luật
Tài liệu gồm 103 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề tính tổng dãy số có quy luật, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT Dạng 1: Tổng các số hạng cách đều S = a1 + a2 + a3 + … + an. Dạng 2: Tính tổng có dạng S = 1 + a + a2 + a3 + … + an. Dạng 3: Tính tổng có dạng S = 1 + a2 + a4 + a6 + … + a2n. Dạng 4: Tính tổng có dạng S = a + a3 + a5 + a7 + … + a2n + 1. Dạng 5: Tính tổng có dạng S = 1.2 + 2.3 + 3.4 + 4.5 + … + n(n + 1). Dạng 6: Tính tổng có dạng S = 12 + 22 + 32 + 42 + … + n2. Dạng 7: Tính tổng có dạng S = 12 + 32 + 52 + … + (2k + 1)2. Dạng 8: Tính tổng có dạng S = 22 + 42 + 62 + … + (2k)2. Dạng 9: Tính tổng có dạng S = a1.a2 + a2.a3 + a3.a4 + … + an.an+1. Dạng 10: Tính tổng có dạng S = a1.a2.a3 + a2.a3.a4 + a3.a4.a5 + … + an.an+1.an+2. Dạng 11: Tính tổng có dạng S = 1 + 23 + 33 + … + n3. Dạng 12: Liên phân số. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ THI HSG TOÁN 6
Chuyên đề so sánh
Tài liệu gồm 105 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT CHỦ ĐỀ 1: SO SÁNH LŨY THỪA. I. KIẾN THỨC CẦN NHỚ. II. CÁC DẠNG TOÁN. Dạng 1: So sánh hai số lũy thừa. Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). Dạng 3: Từ việc so sánh lũy thừa tìm cơ số (số mũ) chưa biết. Dạng 4: Một số bài toán khác. CHỦ ĐỀ 2: SO SÁNH PHÂN SỐ. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG TOÁN. Phương pháp 1: Quy đồng mẫu dương. Phương pháp 2: Quy đồng tử dương. Phương pháp 3: Tích chéo với các mẫu dương. Phương pháp 4: Dùng số hoặc phân số làm trung gian. Phương pháp 5: Dùng tính chất. Phương pháp 6: Đổi phân số lớn hơn đơn vị ra hỗn số để so sánh. III. CÁC BÀI TẬP TỔNG HỢP. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ HSG TOÁN 6
Chuyên đề chữ số tận cùng
Tài liệu gồm 45 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề chữ số tận cùng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT. 1. Tìm một chữ số tận cùng. Tính chất 1: + Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1. + Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 6. Tính chất 2: + Một số tự nhiên bất kì khi nâng lên lũy thừa bậc 4n + 1 thì chữ số tận cùng vẫn không thay đổi. + Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng. Tính chất 3: + Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 7; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 3. + Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 8; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 2. + Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9 khi nâng lên lũy thừa bậc 4 3 n sẽ không thay đổi chữ số tận cùng. 2. Tìm hai chữ số tận cùng. Việc tìm hai chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 100. 3. Tìm ba chữ số tận cùng trở lên. Việc tìm ba chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 1000. II. CÁC DẠNG TOÁN. Dạng 1: Tìm một chữ số tận cùng. Dạng 2: Tìm hai chữ số tận cùng. Dạng 3: Tìm ba chữ số tận cùng. Dạng 4: Vận dụng chứng minh chia hết, chia có dư. Dạng 5: Vận dụng chữ số tận cùng vào bài toán chính phương. III. BÀI TẬP. B. BÀI TOÁN TRONG ĐỀ THI HSG VÀ CHUYÊN TOÁN 6