Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lần 1 môn Toán lớp 12 năm 2020 - 2021 THPT Quế Võ có đáp án - Mã đề 101

Nguồn: onluyen.vn

Đọc Sách

Đề KSCL 8 tuần HK1 Toán 12 năm 2023 - 2024 THPT chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng 8 tuần học kì 1 môn Toán 12 ABD năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định (mã đề 638).
Đề KSCL 8 tuần HK1 Toán 12 năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
Đề khảo sát chất lượng 8 tuần học kỳ 1 môn Toán 12 năm học 2021 – 2022 trường THPT chuyên Lê Hồng Phong – Nam Định dành cho học sinh lớp 12 theo học các khối A – B – D, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 638.
Đề KSCL giữa học kì 1 Toán 12 năm 2020 - 2021 trường THPT Thạch Bàn - Hà Nội
Ngày … tháng 11 năm 2020, trường THPT Thạch Bàn, quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa học kì 1 môn Toán 12 năm học 2020 – 2021. Đề KSCL giữa học kì 1 Toán 12 năm 2020 – 2021 trường THPT Thạch Bàn – Hà Nội mã đề 212 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề KSCL giữa học kì 1 Toán 12 năm 2020 – 2021 trường THPT Thạch Bàn – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD = 60 độ và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 độ. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích là V1, khối còn lại có thể tích là V2 (tham khảo hình vẽ bên). Tính tỉ số V2/V1. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB, N là điểm thuộc cạnh SC sao cho SN = 2CN, P là điểm thuộc cạnh SD sao cho SP = 3DP. Mặt phẳng (MNP) cắt SA tại Q. Biết khối chóp S.MNPQ có thể tích bằng 1, khối đa diện S.ABCD có thể tích bằng? + Cho hàm số y = f(x) liên tục trên [-3;2] và có bảng biến thiên như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [0;2]. Giá trị của M – m bằng?