Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 5 năm 2023 trường THCS Nghĩa Tân Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 5 năm 2023 trường THCS Nghĩa Tân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 tháng 5 năm 2023 trường THCS Nghĩa Tân Hà Nội Đề khảo sát Toán lớp 9 tháng 5 năm 2023 trường THCS Nghĩa Tân Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9 của trường THCS Nghĩa Tân! Hôm nay, Sytu xin giới thiệu đến mọi người đề khảo sát chất lượng môn Toán lớp 9 tháng 5 năm 2023 tại trường chúng ta. Đề thi sẽ được tổ chức vào ngày 25 tháng 05 năm 2023, với đầy đủ đề thi, đáp án và hướng dẫn chấm điểm cho các em. Trong đề sẽ có những câu hỏi đa dạng và phong phú, giúp các em rèn luyện và nâng cao kiến thức môn Toán một cách hiệu quả. Dưới đây là một số ví dụ về các câu hỏi trong đề khảo sát: Bài toán 1: Một ca nô đi từ A đến B và ngược lại, tổng thời gian đi là 4 giờ 6 phút. Hỏi vận tốc riêng của ca nô là bao nhiêu nếu biết vận tốc dòng nước là 3km/h? Bài toán 2: Tính thể tích nước trong thùng tròn khi biết bán kính đáy 0,3m và chiều cao 0,7m của thùng. Bài toán 3: Chứng minh các tính chất của các hình học trong hình dưới đây. Đề khảo sát Toán lớp 9 tháng 5 năm 2023 trường THCS Nghĩa Tân Hà Nội hứa hẹn sẽ mang lại cho các em trải nghiệm học tập thú vị và bổ ích. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm học 2021 - 2022 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm học 2021 – 2022 sở GD&ĐT Hà Nội : + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC đồng quy tại trực tâm H. Gọi K, Q lần lượt là giao điểm của đường thẳng EF với hai đường thẳng AH, AO. 1) Chứng minh AQE = 90°. 2) Gọi I là trung điểm của AH. Chứng minh IE2 = IK.ID. 3) Gọi R, J lần lượt là trung điểm của BE, CF. Chứng minh JR vuông góc với QD. + Tìm tất cả các số nguyên dương a, b sao cho số (a3 + b)(b3 + a) là lập phương của một số nguyên tố. + Trên bảng ta viết số tự nhiên 222…2 gồm 2022 chữ số 2. Mỗi bước ta chọn 22 chữ số liên tiếp nào đó có chữ số ngoài cùng bên trái bằng 2, rồi biến đổi các chữ số được chọn theo qui tắc: chữ số 2 đổi thành chữ số 0 còn chữ số 0 đổi thành chữ số 2. a) Chứng minh mọi cách thực hiện đều phải dừng lại sau một số hữu hạn bước. b) Giả sử sau khi thực hiện được n bước thì không thể thực hiện được thêm bước nào nữa. Chứng minh n là số lẻ.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2022. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Quảng Trị : + Tìm tất cả các giá trị của tham số m để đường thẳng y = (m2 + 10)x – 25 cắt đồ thị hàm số y = x2 tại hai điểm phân biệt mà hoành độ của chúng đều là các số nguyên. + Cho hai đường tròn (O) và (O’) cắt nhau tại A, B. Tiếp tuyến chung gần B hơn A tiếp xúc với (O) và (O’) lần lượt tại M và N. Gọi P là giao điểm của AB và MN. a) Chứng minh rằng PM2 = PB.PA, từ đó suy ra P là trung điểm của đoạn thẳng MN. b) Gọi D là hình chiếu của N lên đường thẳng MB. Chứng minh rằng AB là phân giác của MAD. c) Gọi C là giao điểm của OO’ và DN. Chứng minh rằng CBN = 90°. + Tại điểm tiêm chủng số 1 của Trung tâm y tế thành phố Đông Hà, người ta bố trí một phòng chờ cho những người đến tiêm. Để đảm bảo an toàn về phòng chống dịch Covid-19, yêu cầu khoảng cách tối thiểu giữa hai người bất kỳ trong phòng là 2m. Hỏi tại một thời điểm, phòng chờ đó chứa được tối đa bao nhiêu người? Biết rằng nền của phòng chờ là một hình vuông có diện tích 16m².
Đề thi học sinh giỏi cấp tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán bậc THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào thứ Tư ngày 16 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Lào Cai : + Chọn ngẫu nhiên một số tự nhiên có 3 chữ số. Tính xác suất để số được chọn chia hết cho 9. + Một cửa hàng bán mận tam hoa của Bắc Hà, ngày thứ nhất bán với giá là 50.000 đồng 1 kg; với giá bán này cửa hàng chỉ bán được 50 kg. Ngày thứ hai, nếu cửa hàng này giảm giá bán mỗi kilogam mận đi 1.000 đồng thì số mận tam hoa bán được sẽ tăng thêm là 10 kg. Biết giá nhập về ban đầu 1 kg mận tam hoa là 35.000 đồng, ngày thứ hai để cửa hàng đó thu được lợi nhuận là 1.000.000 đồng thì phải bán với giá không đổi là bao nhiêu tiền một kilogam mận? + Cho phương trình x2 – (m – 2)x – m2 – 3m – 8 = 0 (1) (m là tham số). Gọi x1, x2 là hai nghiệm của phương trình (1). Tìm tất cả các giá trị của tham số m để Q đạt giá trị lớn nhất.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Thái Nguyên : + Cho tập hợp X = {0; 1; 2; …; 20}. Gọi Y là tập hợp con bất kỳ gồm có 7 phần tử của tập hợp X. Chứng minh rằng tồn tại hai tập hợp con A và B của tập hợp Y (A khác B, A khác Ø, B khác Ø) sao cho tổng các phần tử của tập hợp A bằng tổng các phần tử của tập hợp B. + Trong mặt phẳng tọa độ Oxy, gọi A, B lần lượt là tọa độ giao điểm của đường thẳng (d): y = x – 2 với trục hoành và trục tung. Tính diện tích tam giác OAB và khoảng cách từ điểm O đến đường thẳng (d). b. Giải phương trình x2 + 4 = 3x + 2x – 1. c. Trên parabol (P): y = x² lấy ba điểm phân biệt A(a;a2), B(b;b2), C(c;c2) sao cho a2 – b = b2 – c = c2 – a. Tính giá trị biểu thức sau: T = (a + b + 1)(b + c + 1)(c + a + 1). + Tìm số tự nhiên n sao cho n + 3 là số nguyên tố và 2n + 7 là lập phương của một số tự nhiên.