Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8

Tài liệu gồm 57 trang, hướng dẫn giải các dạng toán chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8, giúp học sinh lớp 8 ôn tập, rèn luyện để chuẩn bị cho kì thi học sinh giỏi môn Toán 8 các cấp. A. Giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức Nếu với mọi giá trị của biến thuộc một khoảng xác định nào đó mà giá trị của biểu thức A luôn luôn lớn hơn hoặc bằng (nhỏ hơn hoặc bằng) một hằng số k và tồn tại một giá trị của biến để A có giá trị bằng k thì k gọi là giá trị nhỏ nhất (giá trị lớn nhất) của biểu thức A ứng với các giá trị của biểu thức thuộc khoảng xác định nói trên. B. Các dạng toán Dạng 1 : Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. Phương pháp: Áp dụng hằng đẳng thức số 1 và số 2. Dạng 2 : Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. Phương pháp: Ta đưa về dạng tổng bình phương. Dạng 3 : Đa thức có từ 2 biến trở lên. Phương pháp: Đa số các biểu thức có dạng 2 2 F x y ax by cxy dx ey h a b c. Ta đưa dần các biến vào trong hằng đẳng thức 2 2 2 a ab b a b như sau 2 2 F x y mK x y nG y r hoặc 2 2 F x y mK x y nH x r. Trong đó G y H x là biểu thức bậc nhất đối với biến, còn K x y px qy k cũng là biểu thức bậc nhất đối với cả hai biến x và y. Cụ thể: Ta biến đổi (1) để chuyển về dạng (2) như sau với 2 a ac b 0 4 0. Nếu m > 0, n > 0 thì ta tìm được giá trị nhỏ nhất. Nếu m < 0, n < 0 thì ta tìm được giá trị lớn nhất. Dễ thấy rằng luôn tồn tại (x;y) để có dấu của đẳng thức, như vậy ta sẽ tìm được cực trị của đa thức đã cho. Trong cả hai trường hợp trên: Nếu r = 0 thì phương trình F(x;y) = 0 có nghiệm. Nếu F x y r thì không có nào thỏa mãn F(x;y) = 0. Nếu a ac b r F x y phân tích được tích của hai nhân tử, giúp ta giải được các bài toán khác. Dạng 4 : Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. Phương pháp: – Dồn biến từ điều kiền rồi thay vào biểu thức. – Biến đổi biểu thức thành các thành phần có chứa điều kiện để thay thế. – Sử dụng thêm một số bất đẳng thức phụ. Dạng 5 : Phương pháp đổi biến số. Phương pháp: – Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. – Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. – Sử dụng các hằng đẳng thức. Dạng 6 : Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. Dạng 7 : Dạng phân thức. A. Phân thức có tử là hằng số, mẫu là tam thức bậc hai. Phương pháp: Biểu thức dạng này đạt giá trị nhỏ nhất khi mẫu đạt giá trị lớn nhất. B. Phân thức có mẫu là bình phương của một nhị thức. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. C. Tìm GTLN – GTNN của phân thức có dạng khác. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. 1. Bậc của tử nhỏ hơn bậc của mẫu. 2. Bậc của tử bằng bậc của mẫu.

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn tập HK2 Toán 8 năm 2017 - 2018 trường Ngô Sĩ Liên - Hà Nội
Đề cương ôn tập HK2 Toán 8 năm học 2017 – 2018 trường THCS Ngô Sĩ Liên – Hà Nội gồm 43 trang tuyển chọn các bài toán lớp 8 giai đoạn học kỳ 2 điển hình nhằm giúp học sinh tự ôn để chuẩn bị cho kỳ thi HK2 Toán 8, các bài toán có lời giải chi tiết . Các dạng toán trong đề cương gồm : + Dạng 1: Rút gọn biểu thức + Dạng 2: Phương trình và bất phương trình + Dạng 3: Giải bài toán bằng cách lập phương trình + Dạng 4: Bài tập hình học + Dạng 5: Một số bài tập nâng cao
Đề cương Toán 8 HK2 năm học 2017 - 2018 trường THCS Lý Thái Tổ - Hà Nội
Đề cương Toán 8 HK2 năm học 2017 – 2018 trường THCS Lý Thái Tổ – Hà Nội gồm 8 trang tuyển chọn các bài toán tiêu biểu giúp học sinh ôn tập, chuẩn bị cho kỳ thi học kỳ 2 Toán 8 sắp tới. A. LÝ THUYẾT Nội dung trọng tâm trong chương trình Toán 8 HK2 học sinh cần nắm: I. ĐẠI SỐ – Biến đổi các biểu thức hữu tỉ, giá trị của phân thức. – Phương trình bậc nhất một ẩn, phương trình đưa về dạng ax + b = 0. – Phương pháp giải phương trình tích, phương trình chứa ẩn ở mẫu. – Các bước giải bài toán bằng cách lập phương trình. – Liên hệ giưa thứ tự và phép cộng, phép nhân. – Định nghĩa bất phương trình bậc nhất một ẩn và cách giải. – Cách giải phương trình chứa dấu giá trị tuyệt đối. II. HÌNH HỌC – Định lí Ta – lét (thuận và đảo), hệ quả của định lí Ta-lét. – Tính chất đường phân giác của tam giác. – Các trường hợp đồng dạng của tam giác (c-c-c, c-g-c, g-g). – Các trường hợp đồng dạng của tam giác vuông. B. BÀI TẬP
Các dạng toán và phương pháp giải Toán 8 Ngô Văn Thọ
Tài liệu gồm 202 trang phân dạng và hướng dẫn phương pháp giải Toán 8 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : PHẦN A . ĐẠI SỐ 8 Chương I . Phép nhân và phép chia các đa thức 1. Nhân đơn thức với đa thức – nhân đa thức với đa thức 2. Hằng đẳng thức 3. Phân tích đa thức thành nhân tử + Vấn đề 1. Phương pháp đặt nhân tử chung + Vấn đề 2. Phương pháp nhóm nhiều hạng tử + Vấn đề 3. Phương pháp dùng hằng đẳng thức + Vấn đề 4. Một số phương pháp khác 4. Chia đa thức + Vấn đề 1. Chia đơn thức cho đơn thức + Vấn đề 2. Chia đa thức cho đơn thức + Vấn đề 3. Chia đa thức cho đa thức Chương II . Phân thức đại số 1. Phân thức đại số + Vấn đề 1. Tìm điều kiện để phân thức có nghĩa + Vấn đề 2. Dạng toán tìm giá trị của biến để phân thức nhận một giá trị nào đó + Vấn đề 3. Chứng minh một phân thức luôn có nghĩa 2. Tính chất cơ bản của phân thức đại số + Vấn đề 1. Phân thức bằng nhau + Vấn đề 2. Rút gọn phân thức 3. Các phép toán về phân thức + Vấn đề 1. Quy đồng mẫu thức của nhiều phân thức + Vấn đề 2. Thực hiện các phép toán trên phân thức Chương III . Phương trình bậc nhất một ẩn 1. Mở đầu về phương trình + Vấn đề 1. Chứng minh một số là nghiệm của một phương trình + Vấn đề 2. Số nghiệm của một phương trình + Vấn đề 3. Chứng minh hai phương trình tương đương 2. Phương trình bậc nhất một ẩn + Vấn đề 1. Phương trình đưa được về dạng phương trình bậc nhất + Vấn đề 2. Phương trình tích + Vấn đề 3. Phương trình chứa ẩn ở mẫu 3. Giải toán bằng cách lập phương trình + Vấn đề 1. Loại so sánh + Vấn đề 2. Loại tìm số gồm hai, ba chữ số + Vấn đề 3. Loại làm chung – làm riêng một việc + Vấn đề 4. Loại chuyển động đều + Vấn đề 5. Loại có nội dung hình học Chương IV . Bất phương trình bậc nhất một ẩn 1. Bất đẳng thức + Vấn đề 1. Chứng minh bđt dựa vào định nghĩa và tính chất cơ bản + Vấn đề 2. Phương pháp làm trội + Vấn đề 3. Chứng minh bất đẳng thức dựa vào bất đẳng thức cô–si 2. Bất phương trình bậc nhất một ẩn 3. Phương trình chứa dấu giá trị tuyệt đối [ads] PHẦN B . HÌNH HỌC 8 Chương I . Tứ giác 1. Tứ giác + Vấn đề 1. Sử dụng tính chất về các góc của một tứ giác để tính góc + Vấn đề 2. Sử dụng bất đẳng thức tam giác để giải các bài toán liên hệ đến các cạnh của một tứ giác 2. Hình thang – hình thang vuông + Vấn đề 1. Tính chất các góc của một hình thang + Vấn đề 2. Chứng minh một tứ giác là hình thang, hình thang vuông 3. Hình thang cân + Vấn đề 1. Sử dụng tính chất của hình thang cân để tính toán và chứng minh + Vấn đề 2. Chứng minh một tứ giác là hình thang cân 4. Đường trung bình của tam giác, của hình thang 5. Đối xứng trục 6. Hình bình hành + Vấn đề 1. Vận dụng tính chất của hình bình hành để chứng minh tính chất hình học + Vấn đề 2. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành 7. Đối xứng tâm 8. Hình chữ nhật + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật + Vấn đề 2. Vận dụng kiến thức hình chữ nhật để giải toán 9. Hình thoi + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình thoi + Vấn đề 2. Vận dụng kiến thức hình thoi để giải toán 10. Hình vuông + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình vuông + Vấn đề 2. Vận dụng kiến thức hình vuông để giải toán Chương II . Đa giác Chương III . Tam giác đồng dạng 1. Định lí Ta-lét trong tam giác – tính chất đường phân giác + Vấn đề 1. Tính độ dài đoạn thẳng, tỉ số, diện tích + Vấn đề 2. Chứng minh hai đường thẳng song song 2. Tam giác đồng dạng + Vấn đề 1. Sử dụng tam giác đồng dạng để tính toán + Vấn đề 2. Chứng minh hai tam giác đồng dạng
Đề cương ôn tập HK1 Toán 8
Tài liệu gồm 7 trang tuyển chọn bài tập các dạng toán trong chương trình HK1 Toán 8. Các dạng Toán bao gồm: Phần 1 . Đại số + Dạng 1: Rút gọn biểu thức + Dạng 2: Phân tích đa thức thành nhân tử + Dạng 3: Tìm x + Dạng 4: Phép chia đa thức + Dạng 5: Toán cực trị + Dạng 6: Phân thức đại số Phần 2 . Hình học Trong mỗi phần đều có các dạng bài tập ở mức độ cơ bản và nâng cao phù hợp với nhiều đối tượng học sinh.