Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Ea H’Leo Đắk Lắk

Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Ea H’Leo Đắk Lắk Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Ea H’Leo Đắk Lắk Đề thi học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Ea H’Leo Đắk Lắk Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2022-2023 do phòng Giáo dục và Đào tạo UBND huyện Ea H’Leo, tỉnh Đắk Lắk tổ chức. Kỳ thi sẽ diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Ea H’Leo Đắk Lắk: Chứng minh rằng với mọi số tự nhiên n lẻ, ta có công thức (n^2 - 1)/4 là tích của hai số tự nhiên liên tiếp. Cho M = 2.(9^2009 + 9^2008 + … + 9 + 1). Chứng minh rằng M không phải là số chính phương. Cho đường tròn tâm O đường kính AB và một điểm M bất kì thuộc đường tròn. Gọi H là hình chiếu vuông góc của điểm M trên AB. Đường tròn đường kính HM cắt các dây cung MA, MB lần lượt tại P và Q. a. Chứng minh rằng: PHQ = 90° và MP.MA = MQ.MB. b. Gọi E, F lần lượt là trung điểm của AH, BH. Tứ giác EPQF là hình gì? c. Xác định vị trí của M để tứ giác EPQF có diện tích lớn nhất. Mong rằng các thầy cô và các em học sinh sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý vị sức khỏe và may mắn!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS năm 2021 – 2022 phòng GD&ĐT thành phố Sơn La; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2022.
Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.