Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Định

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh 2022-2023 Bình Định Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh 2022-2023 Bình Định Sytu xin gửi đến quý thầy, cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 03 năm 2023. Đề bao gồm các bài toán sau: Trong tam giác nhọn ABC nội tiếp đường tròn (O) và một điểm P bất kì nằm trong tam giác, chứng minh HO là phân giác của góc IHD và KD vuông góc DM. Cho tam giác ABC có các đường phân giác trong AD, BE, CF cắt nhau tại I. Hãy chứng minh một số tính chất của tam giác. Có bao nhiêu tam giác có đỉnh là đỉnh của đa giác đều 2n đỉnh và có một góc lớn hơn 100 độ? Đây là những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các em học sinh. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.