Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

46 bài tập lãi suất - tăng trưởng có đáp án và lời giải chi tiết

Tài liệu gồm 26 trang, được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tuyển tập 46 bài tập lãi suất – tăng trưởng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 46 bài tập lãi suất – tăng trưởng có đáp án và lời giải chi tiết: + Ông Nam gửi vào ngân hàng 100 triệu đồng theo phương thức lãi đơn, với lãi suất 5% trên một năm. Hỏi sau 5 năm số tiền ông Nam nhận được cả vốn lẫn lãi là bao nhiêu? A. 125 triệu. B. 120 triệu. C. 130 triệu. D. 128 triệu. + Chị Hằng gửi ngân hàng 3350000 đồng theo phương thức lãi đơn, với lãi suất 4% trên nửa năm. Hỏi ít nhất bao lâu chị rút được cả vốn lẫn lãi là 4020000 đồng? A. 5 năm. B. 30 tháng. C. 3 năm. D. 24 tháng. + Ông Bình gửi vào ngân hàng 50 triệu đồng theo phương thức lãi đơn, với lãi suất lãi suất 3% trên nửa năm. Hỏi sau 5 năm số tiền lãi mà ông Bình nhận được là bao nhiêu? A. 15 triệu. B. 65 triệu. C. 7,5 triệu. D. 57,5 triệu. + Bác Lan gửi 1500 USD với lãi suất đơn cố định theo quý. Sau 3 năm, số tiền bác ấy nhận được cả gốc lẫn lãi là 2320 USD. Hỏi lãi suất tiết kiệm là bao nhiêu một quý? (làm tròn đến hàng phần nghìn). A. 0,182. B. 0,046. C. 0,015. D. 0,037. + Tính theo phương thức lãi đơn; để sau 2 năm ông Bình rút được cả vốn lẫn lãi số tiền là 91.220.800 đồng với lãi suất 1,7% một quý thì ông Bình phải gửi tiết kiệm số tiền bao nhiêu? A. 79.712.468 đồng. B. 88.221.276 đồng. C. 88.221.277 đồng. D. 80.300.000 đồng.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm hàm số lượng giác và phương trình lượng giác - Tô Quốc An
Tài liệu 42 trang tổng hợp khoảng 350 bài toán trắc nghiệm về chủ đề hàm số lượng giác và phương trình lượng giác, có đáp án. Trích dẫn tài liệu : + Tìm tập giá trị nhỏ nhất, giá trị lớn nhất của hàm số sau y = 4sin3x – 3cos3x + 1 A. min y = -3; max y = 6 B. min y = -4; max y = 6 C. min y = -4; max y = 4 D. min y = -2; max y = 6 + Theo định nghĩa trong sách giáo khoa: A. Hàm số lượng giác có tập xác định là R B. Hàm số y = tanx có tập xác định là R [ads] C. Hàm số y = cotx có tập xác định là R D. Hàm số y = sinx có tập xác định là R + Phương trình (sinx)^2 – 4sinxcosx + 3(cosx)^2 = 0 có tập nghiệm trùng với tập nghiệm của phương trình nào sau đây? A. cosx = 0 B. cotx = 1 C. tanx = 3 D. tanx = 1 hoặc cotx = 1/3
Bài tập trắc nghiệm hàm số lượng giác và phương trình lượng giác - Phan Hữu Thế
KIẾN THỨC CẦN NẮM 1. Giá trị lượng giác của các góc có liên quan đặc biệt 2. Phương trình sinx = sina 3. Phương trình cosx = cosa 4. Phương trình tanx = tana 5. Phương trình cotx = cota 6. Một số điëu cần chú ý [ads] PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 1. Phương trình bậc nhất đối với một hàm số lượng giác 2. Phương trình bậc hai đối với một hàm số lượng giác 3. Phương trình bậc nhất đối với sinx và cosx 4. Phương trình bậc nhất theo sinx và cosx dạng mở rộng + Dạng 1: asinx + bcosx = √(a^2 + b^2)sinkx + Dạng 2: asinkx + bcoskx = bsinqx + acosqx + Dạng 3: Phương trình đẳng cấp: asin^2x + bsinxcosx + ccos^2x = 0 + Dạng 4: Phương trình đối xứng và phản đối xứng a(sinx + cosx) + bsinxcosx + c = 0
172 bài tập trắc nghiệm hàm số lượng giác và phương trình lượng giác - Võ Hữu Quốc
Tài liệu gồm 20 trang, tuyển tập 172 bài tập trắc nghiệm về hàm số lượng giác và phương trình lượng giác. Các bài toán được phân  loại thành 8 dạng: 1. Tìm tập xác định hàm số lượng giác 2. Tìm GTLN – GTNN (Tập giá trị) của hàm số lượng giác 3. Xét tính chẵn lẻ của hàm số lượng giác 4. Xác định khoảng biến thiên của hàm số lượng giác [ads] 5. Các dạng toán về tuần hoàn và chu kỳ 6. Phương trình lượng giác cơ bản 7. Phương trình lượng giác thường gặp 8. Phương trình lượng giác nâng cao
Bài tập hàm số lượng giác và phương trình lượng giác có đáp án và lời giải chi tiết - Đặng Việt Đông
Tài liệu gồm 237 trang, tuyển tập và phân dạng, và giải chi tiết các bài tập về hàm số lượng giác và phương trình lượng giác (Chương 1 – Đại số và Giải tích 11). Nội dung tài liệu gồm: Phần 1. Hàm số lượng giác + Dạng 1. Tìm tập xác định, tập giá trị, xét tính chẵn lẻ, chu kỳ của hàm số + Dạng 2. Sự biến thiên và đồ thị hàm số lượng giác + Dạng 3. Giá trị lớn nhất và nhỏ nhất của hàm số Phần 2. Phương trình lượng giác + Phương trình lượng giác cơ bản và phương trình bậc nhất với một hàm số lượng giác + Phương trình quy về bậc nhất với một hàm số lượng giác [ads] + Phương trình bậc hai và quy về bậc hai với một hàm số lượng giác + Phương trình đẳng cấp với sin và cosin + Phương trình đối xứng và dạng đối xứng với sin và cosin Phần 3. Bài tập + Phương trình bậc nhất với sin và cosin + Phương trình quy về bậc nhất với sin và cosin + Phương trình lượng giác đưa về tích + Phương trình lượng giác không thường gặp