Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán

Tài liệu gồm 62 trang, được biên soạn bởi nhóm tác giả Mathpiad − Tạp chí và tư liệu toán học: Phan Quang Đạt − Nguyễn Nhất Huy − Dương Quỳnh Châu, tổng hợp các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 chuyên Toán. Chương I : Một số kiến thức sử dụng trong tài liệu. 1 Các định nghĩa ngoài sách giáo khoa. + Số chính phương là số có thể biểu diễn dưới dạng bình phương của một số tự nhiên. + Số lập phương là số có thể biểu diễn dưới dạng lập phương của một số nguyên. 2 Các kí hiệu, quy ước ngoài sách giáo khoa. + Kí hiệu a | b dùng thay cho mệnh đề “a là ước của b”, và đọc là “a chia hết b”. + Kí hiệu (a,b) dùng để chỉ ước chung lớn nhất của a và b. Đôi lúc, nó còn dùng để chỉ cặp số (a,b), vì thế cần phân biệt rõ. + Kí hiệu a ≡ b (mod m) dùng thay cho mệnh đề “a và b có cùng số dư khi chia cho m” và đọc là “a đồng dư với b theo modulo m”. 3 Các hằng đẳng thức mở rộng. 4 Các tính chất về ước chung lớn nhất. + Với các số nguyên a, b, c khác 0 thỏa mãn c | ab và (a,c) = 1, ta có thể suy ra c | b. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c2 và (a,c) = 1, ta có |a| và |b| là hai số chính phương. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c3 và (a,c) = 1, ta có a và b là hai số lập phương. 5 Các tính chất về đồng dư thức và chia hết. (a) Tính chia hết của tổng, tích các số nguyên liên tiếp. + Tổng của n số nguyên liên tiếp luôn chia hết cho n. + Tích của n số nguyên liên tiếp luôn chia hết cho n!, ở đây n! là tích của tất cả các số tự nhiên từ 1 đến n. (b) Nếu a ≡ b (mod m). (c) Một số chính phương bất kì chỉ có thể: + Đồng dư với 0 hoặc 1 theo modulo 3. + Đồng dư với 0 hoặc 1 theo modulo 4. + Đồng dư với 0,1 hoặc 4 theo modulo 8. (d) Định lý Fermat nhỏ: Cho p là số nguyên tố và a là số nguyên dương thỏa mãn a không chia hết cho p, khi đó a^ p − 1 ≡ 1 (mod p). 6 Bổ đề kẹp. Giữa hai lũy thừa số mũ n liên tiếp, không tồn tại một lũy thừa cơ số n nào. Hệ quả: với mọi số nguyên a: + Không có số chính phương nào nằm giữa a2 và (a + 1)2. + Số chính phương duy nhất nằm giữa a2 và (a + 2)2 là (a + 1)2. + Có đúng k − 1 số chính phương nằm giữa a2 và (a + k)2. 7 Bổ đề về nghiệm nguyên của phương trình bậc hai. Nếu phương trình bậc hai với hệ số nguyên ax2 + bx + c = 0 có hai nghiệm nguyên (không nhất thiết phân biệt) thì ∆ = b2 −4ac là số chính phương. Chương II : Giới thiệu một số bài toán số học trong đề thi vào lớp 10 chuyên Toán. Chương III : Lời giải tham khảo.

Nguồn: toanmath.com

Đọc Sách

Các bài toán về quan hệ chia hết trong tập hợp số
Nội dung Các bài toán về quan hệ chia hết trong tập hợp số Bản PDF - Nội dung bài viết Các bài toán về quan hệ chia hết trong tập hợp số Các bài toán về quan hệ chia hết trong tập hợp số Tài liệu này bao gồm một số bài toán thú vị về quan hệ chia hết trong tập hợp số. Những bài toán này giúp bạn hiểu rõ hơn về quy luật chia hết, cách xác định số chia và số bị chia, cũng như ứng dụng của chúng trong thực tế. Với 95 trang thông tin hữu ích, cuốn sách này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết các bài toán liên quan đến chia hết trong tập hợp số.
Các bài toán về ước và bội
Nội dung Các bài toán về ước và bội Bản PDF - Nội dung bài viết Các bài toán về ước và bội Các bài toán về ước và bội Tài liệu này bao gồm 44 trang và được trích đoạn từ một cuốn sách về các bài toán liên quan đến ước và bội. Các bài toán này có thể được áp dụng trong nhiều lĩnh vực khác nhau như toán học, khoa học máy tính, và kỹ thuật. Việc hiểu biết về các bài toán này sẽ giúp bạn phát triển kỹ năng giải quyết vấn đề và logic. Hãy cẩn thận khi giải quyết các bài toán này, vì chúng có thể đưa ra những giải pháp không ngờ đến.
Phân dạng và phương pháp giải toán số học và tổ hợp Nguyễn Quốc Bảo
Nội dung Phân dạng và phương pháp giải toán số học và tổ hợp Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Phân dạng và phương pháp giải toán số học và tổ hợp của Nguyễn Quốc Bảo Phân dạng và phương pháp giải toán số học và tổ hợp của Nguyễn Quốc Bảo Tài liệu được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, gồm 523 trang, chuyên về phân dạng và hướng dẫn phương pháp giải các bài toán chuyên đề số học và tổ hợp. Được sử dụng để bồi dưỡng học sinh giỏi Toán từ lớp 8 đến lớp 9, cũng như ôn tập cho kì thi tuyển sinh vào lớp 10 môn Toán. Phần đầu tiên của tài liệu tập trung vào các chủ đề số học trung học cơ sở như các bài toán về ước và bội, bao gồm cách tìm số ước của một số, tìm số nguyên n thỏa mãn điều kiện chia hết, và tìm số biết ƯCLN và BCNN của chúng. Ngoài ra, còn có các bài toán về phân số tối giản, liên quan đến phép chia có dư, phép chia hết, ƯCLN, BCNN, và ƯCLN của hai số theo thuật toán Ơ-clit. Chủ đề tiếp theo là các bài toán về quan hệ chia hết, trong đó hướng dẫn sử dụng tính chất của n số tự nhiên liên tiếp, phân tích thành nhân tử, tách tổng, hằng đẳng thức, xét số dư, phản chứng, quy nạp, nguyên lý Dirichlet, đồng dư, và định lý Fermat. Các bài toán trong phần này liên quan đến cấu tạo số và tính chia hết, đồng thời áp dụng vào các bài toán phức tạp hơn về đa thức. Tài liệu này giúp học sinh hiểu rõ hơn về cách phân loại và giải các bài toán số học và tổ hợp một cách logic và chính xác, từ đó nắm vững kiến thức và tự tin hơn khi giải các bài toán trong kì thi và cuộc sống hằng ngày.
Chuyên đề hàm số và đồ thị ôn thi vào môn Toán Nguyễn Đăng Tuấn
Nội dung Chuyên đề hàm số và đồ thị ôn thi vào môn Toán Nguyễn Đăng Tuấn Bản PDF - Nội dung bài viết Chuyên Đề Hàm Số Và Đồ Thị Ôn Thi Toán Lớp 10 - Nguyễn Đăng Tuấn Chuyên Đề Hàm Số Và Đồ Thị Ôn Thi Toán Lớp 10 - Nguyễn Đăng Tuấn Tài liệu "Chuyên đề hàm số và đồ thị ôn thi vào lớp 10 môn Toán" được biên soạn bởi Thạc sĩ Nguyễn Đăng Tuấn với 52 trang, bao gồm 105 bài tập chuyên đề hàm số và đồ thị ôn thi vào môn Toán. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Qua tài liệu này, bạn sẽ được hướng dẫn giải các bài tập như: Đặt hàm số y = mx + m^2 - 1/4 (trong đó m là tham số) có đồ thị là đường thẳng (d). Hỏi m nào thì (d) đi qua điểm A(-1;2)? Xác định giá trị của m sao cho đường thẳng (d) song song với đường thẳng (Δ) có phương trình y = x + 5/1. Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định khi m thay đổi. Ngoài ra, tài liệu còn cung cấp các bài tập khác như tìm tọa độ giao điểm của hai đồ thị, tính diện tích của tứ giác được tạo bởi hai đồ thị, xác định điểm cắt của đồ thị với đường thẳng, và nhiều bài tập khác giúp học sinh ôn luyện và nắm vững kiến thức hàm số và đồ thị. Để biết thêm thông tin chi tiết, vui lòng tải tài liệu và tham khảo để đạt kết quả cao trong kỳ thi Toán sắp tới!