Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Triệu Phong - Quảng Trị

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Triệu Phong, tỉnh Quảng Trị. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Triệu Phong – Quảng Trị : + Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên đường chéo AC. Đường thẳng qua E và song song với AB cắt BC tại F. Gọi G là điểm đối xứng với C qua F, chứng minh rằng EG song song với đường chéo BD. + Cho tam giác ABC vuông cân tại A có AM là đường trung tuyến (M thuộc BC). Đường thẳng qua B và vuông góc với phân giác trong của góc MAC cắt AC, AM lần lượt tại D, E. Chứng minh CD = 2ME. + Một hình tròn được chia thành 6 hình quạt tròn. Tom viết lần lượt lên 6 hình quạt đó các số 2, 0, 2, 3, 0, 9 theo chiều kim đồng hồ, mỗi hình quạt được viết 1 số. Jerry có thể cộng thêm 1 đơn vị cho mỗi số ở 2 hình quạt tròn kề nhau bất kỳ. Hãy xác định xem Jerry có thể cộng thêm như vậy để được các số ở 6 hình quạt tròn bằng nhau hay không?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Trên bảng có 2022 số tự nhiên khác nhau từ 1 đến số 2022. Lần thứ nhất xóa đi 2 số bất kì và viết tổng của chúng lên bảng, lúc này trên bảng còn 2021 số. Lần thứ hai xóa đi 2 số bất kì và viết tổng của chúng lên bảng và cứ tiếp tục như vậy. Hỏi lần thứ 2021, trên bảng còn lại số nào? + Cho hình vuông cạnh 2a và hai nửa đường tròn bán kính cùng bằng a, tiếp xúc với nhau như hình vẽ. Một đường tròn (I) tiếp xúc với hai nửa đường tròn đã cho và tiếp xúc với cạnh hình vuông. Tính diện tích hình tròn (I). + Cho đường tròn (O) đường kính BC và điểm A di động trên đường tròn (O) (A khác B và C). Gọi H là chân đường vuông góc kẻ từ A đến cạnh BC của tam giác ABC. Gọi D là trung điểm của HC. Qua H kẻ đường thẳng vuông góc với AD cắt AB tại E. a) Chứng minh rằng HD.HE = AD.AH b) Chứng minh rằng B là trung điểm của AE. Tìm quỹ tích điểm E.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi gồm 20 câu trắc nghiệm (6.0 điểm) và 04 câu tự luận (4.0 điểm), thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh); kỳ thi được diễn ra vào ngày 26 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Bắc Giang : + Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Gọi M là điểm thuộc cung nhỏ BC của đường tròn (O). Biết MA = 6cm, MB = 4cm. Độ dài đoạn MC bằng: A. MC = 5cm B. MC = 2cm C. MC = 3cm D. MC = 10cm? + Biết đường thẳng y = 3x + m cắt trục hoành tại điểm A, cắt trục tung tại điểm B. Tập hợp tất cả các giá trị của tham số m để diện tích tam giác OAB bằng 6 (O là gốc tọa độ) là? + Gọi S là tập hợp tất cả các giá trị của tham số m để tích các hệ số góc của hai đường thẳng y = (m – 1)x + 2021 và y = mx + 2022 (với m khác 1 và m khác 0) bằng 6. Tính tổng các phần tử của S.