Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa học kỳ 2 Toán 12 năm 2018 - 2019 cụm trường THPT TP Nam Định

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề thi khảo sát chất lượng giữa học kỳ 2 Toán 12 năm học 2018 – 2019 cụm trường THPT thành phố Nam Định, kỳ thi vừa nhằm kiểm tra đánh giá chất lượng Toán 12 giữa học kỳ 2, vừa kiểm tra kiến thức chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm 2019 của học sinh khối 12. Đề KSCL giữa học kỳ 2 Toán 12 năm 2018 – 2019 cụm trường THPT TP Nam Định được biên soạn dựa trên cấu trúc đề minh họa THPT Quốc gia 2019 môn Toán do Bộ Giáo dục và Đào tạo công bố, đề có mã 132 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh làm bài thi Toán trong 90 phút. Trích dẫn đề KSCL giữa học kỳ 2 Toán 12 năm 2018 – 2019 cụm trường THPT TP Nam Định : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 4x – 2y + 2z – 19 = 0 và mặt phẳng (P): 2x – y – 2z + m + 3 = 0 với m là tham số. Gọi T là tập tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi bằng 6pi. Tổng giá trị của tất cả các phần tử thuộc T bằng? [ads] + Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là 2dm và 4dm. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số y = √(x + 1). Tính thể tích của bình cắm hoa đó. + Cho hàm số y = f(x) xác định và có đạo hàm cấp một và cấp hai trên khoảng (a;b) và x0 ∈ (a;b). Khẳng định nào sau đây sai? A. Hàm số đạt cực đại tại x0 thì y'(x0) = 0. B. y'(x0) = 0 và y”(x0) > 0 thì x0 là điểm cực tiểu của hàm số. C. y'(x0) = 0 và y”(x0) = 0 thì x0 không là điểm cực trị của hàm số. D. y'(x0) = 0 và y'(x0) ≠ 0 thì x0 là điểm cực trị của hàm số.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2019 sở GDĐT Cần Thơ
Chiều thứ Sáu ngày 17 tháng 05 năm 2019, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 năm 2019 bài khảo sát môn Toán, nhằm kiểm tra kiến thức trong quá trình các em ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo tổ chức. Đề khảo sát chất lượng Toán 12 năm 2019 sở GD&ĐT Cần Thơ có mã đề 101, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề được biên soạn bám sát cấu trúc đề minh họa THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo. [ads] Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 sở GD&ĐT Cần Thơ : + Cho hàm số y = f(x) nghịch biến trên R và thỏa mãn [f(x) – x]f(x) = x^6 + 3x^4 + 2x^2 với mọi x thuộc R. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Giá trị của 3M – m bằng? + Ông A vay 60 triệu đồng của một ngân hàng liên kết với một cửa hàng bán xe máy để mua xe dưới hình thức trả góp với lãi suất 8%/năm. Biết rằng lãi suất được chia đều cho 12 tháng, giảm dần theo dư nợ gốc và không thay đổi trong suốt thời gian vay. Theo qui định của cửa hàng, mỗi tháng ông A phải trả một số tiền cố định là 2 triệu đồng. Sau ít nhất bao nhiêu tháng thì ông A trả hết nợ? + Cho hai đường thẳng d1 và d2 song song với nhau. Trên đường thẳng d1 cho 5 điểm phân biệt, trên đường thẳng d2 cho 7 điểm phân biệt. Số tam giác có đỉnh là các điểm trong 12 điểm đã cho là?
Đề khảo sát chất lượng Toán 12 năm 2018 - 2019 sở GDĐT Phú Thọ
Thứ Sáu ngày 10 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 THPT môn Toán năm học 2018 – 2019, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh trong quá trình các em ôn tập chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo tổ chức. Đề khảo sát chất lượng Toán 12 năm 2018 – 2019 sở GD&ĐT Phú Thọ có mã đề 252, đề được biên soạn với hình thức và cấu trúc tương tự đề tham khảo THPT Quốc gia môn Toán năm 2019, đề gồm 6 trang với 50 câu hỏi và bài toán trắc nghiệm, trong đó tập trung chủ yếu vào nội dung chương trình Toán 12, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát chất lượng Toán 12 năm 2018 – 2019 sở GD&ĐT Phú Thọ : + Một khuôn viên dạng nửa hình tròn, trên đó người ta thiết kế phần trồng hoa hồng có dạng một hình parabol có đỉnh trùng với tâm hình tròn và có trục đối xứng vuông góc với đường kính của nửa đường tròn, hai đầu mút của parabol nằm trên đường tròn và cách nhau một khoảng 4 mét (phần tô đậm). Phần còn lại của khuôn viên (phần không tô màu) dùng để trồng hoa cúc. Biết các kích thước cho như hình vẽ. Chi phí để trồng hoa hồng và hoa cúc lần lượt là 120.000 đồng/m2 và 80.000 đồng/m2. Hỏi chi phí trồng hoa khuôn viên đó gần nhất với số tiền nào dưới đây (là tròn đến nghìn đồng). + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 9 và mặt phẳng (P): 4x + 2y + 4z + 7 = 0. Hai mặt cầu có bán kính là R1 và R2 chứa đường tròn giao tuyến của (S) và (P) đồng thời cùng tiếp xúc với mặt phẳng (Q): 3y – 4z – 20 = 0. Tổng R1 + R2 bằng? + Đầu mỗi tháng, chị B gửi vào ngân hàng 3 triệu đồng theo hình thức lãi kép với lãi suất 0,6% một tháng và lãi suất không thay đổi trong suốt quá trình gửi tiền. Hỏi sau ít nhất bao nhiêu tháng chị B có được số tiền cả gốc và lãi nhiều hơn 150 triệu đồng?
Đề khảo sát Toán 12 lần 3 năm 2018 - 2019 trường THPT Lê Lai - Thanh Hóa
Nhằm kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 12 trong quá trình ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019, vừa qua, trường THPT Lê Lai, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2018 – 2019 lần thứ ba. Đề khảo sát Toán 12 lần 3 năm 2018 – 2019 trường THPT Lê Lai – Thanh Hóa có mã đề 001, đề được biên soạn với hình thức và cấu trúc đề tương tự với đề minh họa THPT Quốc gia môn Toán năm 2019 do Bộ GD&ĐT công bố, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong khoảng thời gian 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề khảo sát Toán 12 lần 3 năm 2018 – 2019 trường THPT Lê Lai – Thanh Hóa : + Trên bức tường cần trang trí một hình phẳng dạng parabol đỉnh S như hình vẽ, biết OS = AB = 4m, O là trung điểm AB. Parabol trên được chia thành ba phần để sơn ba màu khác nhau với mức chi phí: phần kẻ sọc giá 140000 đồng/m2, phần được tô đậm là hình quạt tâm O, bán kính 2m giá 150000 đồng/m2, phần còn lại giá 160000 đồng/m2. Tổng chi phí để sơn cả 3 phần gần nhất với số nào sau đây? + Hình trụ bán kính đáy r. Gọi O và O′ là tâm của hai đường tròn đáy với OO’ = 2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ tại O và O′. Gọi VC và VT lần lượt là thể tích của khối cầu và khối trụ. Khi đó VC/VT bằng? + Cho tam giác ABC vuông tại A. Khi quay tam giác ABC quanh cạnh AB thì hình tròn xoay được tạo thành là: A. hình trụ. B. hình nón. C. hình nón cụt. D. hình cầu.
Đề kiểm tra Toán 12 năm 2018 2019 lần 4 trường Ninh Bình Bạc Liêu Ninh Bình
giới thiệu đến các em học sinh lớp 12 đề kiểm tra Toán 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình, nhằm giúp các em có thêm đề thi chất lượng, chuẩn cấu trúc, để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Đề kiểm tra Toán 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình mã đề 131, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm với 4 đáp án để lựa chọn, học sinh có 90 phút để hoàn thành bài thi thử môn Toán, đề thi có đáp án. [ads] Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình : + Sân vận động Sports Hub (Singapore) là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một elip (E) có trục lớn dài 150 m, trục bé dài 90 m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt elip (E) ở M, N (Hình a) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình b) với MN là một dây cung và góc MIN = 90◦. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? + Cho một quân cờ đứng ở vị trí trung tâm của một bàn cờ 9 × 9 (xem hình vẽ). Biết rằng, mỗi lần di chuyển, quân cờ chỉ di chuyển sang ô có cùng một cạnh với ô đang đứng. Tính xác suất để sau bốn lần di chuyển, quân cờ không trở về đúng vị trí ban đầu. + Trong không gian Oxyz cho mặt cầu (S) có phương trình x^2 + y^2 + z^2 − 4x + 2y − 2z − 3 = 0 và điểm A(5; 3;−2). Một đường thẳng d thay đổi luôn đi qua A và luôn cắt mặt cầu tại hai điểm phân biệt M, N. Tính giá trị nhỏ nhất của biểu thức S = AM + 4AN.