Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2021 2022 trường THCS Lê Quý Đôn Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2021 2022 trường THCS Lê Quý Đôn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 năm 2021 - 2022 Đề khảo sát môn Toán lớp 9 năm 2021 - 2022 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề khảo sát chất lượng môn Toán lớp 9 năm học 2021 - 2022 của trường THCS Lê Quý Đôn, Hà Nội. Đề thi sẽ diễn ra vào ngày 31 tháng 05 năm 2022, với đầy đủ đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trích dẫn từ đề khảo sát Toán lớp 9 năm 2021 - 2022 trường THCS Lê Quý Đôn - Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi cùng chảy vào một bể không có nước thì sau 1 giờ 20 phút đầy bể. Nếu để vòi I chảy một mình trong 10 phút rồi khóa lại và mở tiếp vòi II chảy trong 12 phút thì cả hai vòi chảy được đầy bể. Hỏi thời gian mỗi vòi chảy một mình đầy bể? 2. Một chiếc nón có đường kính đáy bằng 40cm, độ dài đường sinh là 30cm. Người ta lát mặt xung quanh hình nón bằng 3 lớp lá khô. Hãy tính diện tích lá cần dùng để tạo nên chiếc nón đó (lấy pi = 3.14). 3. Cho đường tròn tâm O bán kính R có hai đường kính AB, CD vuông góc với nhau. Lấy điểm M thuộc đoạn thẳng OA. Tia DM cắt đường tròn (O) tại N. Hãy chứng minh các điểm O, M, N, C cùng thuộc một đường tròn và các bước chứng minh khác trong đề. Hy vọng rằng đề khảo sát này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng định kì môn Toán 9 tháng 02 năm học 2021 – 2022 trường THCS Thanh Xuân Trung, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 02 năm 2022. Trích dẫn đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ của một nhà máy sản xuất khẩu trang lúc đầu trong một ngày sản xuất được 1500 chiếc khẩu trang. Để đáp ứng nhu cầu khẩu trang trong mùa dịch cúm do chủng mới virut Corona gây nên mỗi ngày tổ một vượt mức 75%, tổ hai vượt mức 68%, khi đó cả hai tổ sản xuất được 2583 chiếc khẩu trang. Hỏi ban đầu trong một ngày mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang? + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ của một con sông, người ta đặt máy đo ở vị trí C sao cho AC vuông góc AB. Biết AC = 20m và ACB = 75° (hình bên). Tính khoảng cách AB (làm tròn đến mét). + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. 2) a) MN cắt AO tại điểm I. Chứng minh: Al. AO = AM2. b) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 02 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Để chuẩn bị cho công tác phòng chống dịch COVID – 19 khi học sinh quay trở lại trường học trực tiếp, nhà trường dự định mua khẩu trang và dung dịch sát khuẩn với tổng số tiền là 8 triệu đồng. Tuy nhiên, vì cửa hàng có chương trình ưu đãi dành cho trường học, giá khẩu trang giảm 10%, giá dung dịch sát khuẩn giảm 15% nên nhà trường chỉ phải trả 7 triệu đồng. Hỏi số tiền ban đầu dự định để mua khẩu trang là bao nhiêu? + Trong mặt phẳng Oxy, cho đường thẳng (d): y m 1 x 2m m 1 a) Với m = 2, tìm giao điểm của (d) với đường thẳng (d1): y 3x 2 b) Với giá trị nào của m để (d) song song với đường thẳng (d2) y x c) Đường thẳng (d) cắt trục Ox tại điểm B, cắt trục Oy tại điểm A. Tìm m sao cho diện tích tam giác OAB bằng 1 (đvdt). + Cho hai biểu thức: 2 4 2 x x A x và 2 4 2 2 4 x xx B với x x 0 4 1) Tính giá trị của biểu thức A khi x = 9. 2) Chứng minh: 2 x B x. 3) Đặt P AB. So sánh P và 2. 4) Tìm giá trị nguyên dương nhỏ nhất của P.
Đề khảo sát Toán 9 tháng 01 năm 2022 trường M.V. Lômônôxốp - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 tháng 01 năm 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 6 giờ bể sẽ đầy nước. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2 5 bể. + Cho hai hàm số y m 3x m 1 và y 2x 3 có đồ thị lần lượt là (d1) và (d2) a) Với m = 1, tìm tọa độ giao điểm của hai đường thẳng trên. b) Chứng minh rằng điểm cố định mà đường thẳng (d1) luôn đi qua thuộc đường thẳng (d) có phương trình: y 3x 1. + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD, CE cắt nhau tại H. 1) Chứng minh rằng: 4 điểm B, E, D, C cùng thuộc một đường tròn. 2) Chứng minh rằng: AE.AB = AD.AC. 3) Vẽ đường kính AK của đường tròn (O). Gọi I là trung điểm của BC. a) Chứng minh rằng: ba điểm H, I, K thẳng hàng. b) Chứng minh rằng: ED < 2OI.