Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng phân tích nhân tử giải hệ phương trình chứa căn - Lương Tuấn Đức

Tài liệu gồm 268 trang được biên soạn bởi thầy Lương Tuấn Đức trình bày một số phương pháp giải hệ phương trình chứa căn thức bằng phương pháp phân tích nhân tử, đây là dạng toán được bắt gặp nhiều trong chương trình Đại số 10 chương 3 và chương 4. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng phương pháp biến đổi tương đương giải hệ phương trình chứa căn thức: Mở màn cho lớp hệ phương trình chứa căn thức sử dụng phép thế, cộng đại số, phân tích hằng đẳng thức, phân tích nhân tử không chứa căn (không sử dụng liên hợp) và phối hợp các kỹ năng này. Tuy nhiên đây là hệ phương trình chứa căn thức nên đòi hỏi độc giả đã nắm vững các phương pháp giải hệ phương trình cơ bản, hệ phương trình hữu tỷ và các phương pháp giải phương trình chứa căn nói chung. + Sử dụng phép thế và phép cộng đại số. + Khai thác bài toán nghiệm cố định. + Sử dụng phân tích nhân tử cơ bản (dạng đa thức). + Sử dụng hằng đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. [ads] Phần 8 . Kết hợp sử dụng phép thế, cộng đại số và ẩn phụ (tiếp theo) giải hệ phương trình chứa căn thức: Tài liệu chủ yếu giới thiệu đến quý bạn đọc lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. + Phối hợp phép thế, cộng đại số và ẩn phụ. + Sử dụng tính chất đơn điệu hàm số. + Sử dụng kết hợp đánh giá – bất đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. Kiến thức chuẩn bị khi đọc tài liệu: 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức, phân thức, căn thức, giá trị tuyệt đối. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kỹ năng giải hệ phương trình cơ bản và hệ phương trình đối xứng, hệ phương trình đồng bậc, hệ phương trình chứa căn thông thường. 6. Kỹ thuật đặt ẩn phụ, sử dụng đại lượng liên hợp, biến đổi tương đương. 7. Kiến thức nền tảng về uớc lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị.

Nguồn: toanmath.com

Đọc Sách

Giải phương trình bằng máy tính Casio - Tập 1 Đánh giá hàm đơn điệu
Tài liệu gồm 14 trang hướng dẫn sử dụng máy tính Casio để xét nhanh tính đơn điệu của hàm số, từ đó làm cơ sở để giải quyết bài toán phương trình vô tỉ. Tài liệu do nhóm Casio Man biên soạn.
Giải phương trình - bất phương trình bằng phương pháp Vector
Tài liệu gồm 6 trang hướng dẫn giải một số bài toán phương trình và bất phương trình bằng phương pháp vectơ. Đây là một lớp bài toán khó và phương pháp vectơ cũng là phương pháp ít được đề cập trong Toán THPT, tuy nhiên nếu năm vững phương pháp, học sinh có thể giải quyết các bài toán phương trình vô tỷ khó một cách gọn gàng thông qua các đẳng thức và bất đẳng thức vectơ.
Chuyên đề phương trình và bất phương trình chứa căn - Nguyễn Thanh Vân
Tài liệu gồm 26 trang trình bày các dạng toán và phương pháp giải bài toán phương trình chứa căn, tài liệu được biên soạn bởi tác giả Nguyễn Thanh Vân. Nội dung tài liệu : I. Các kiến thức cơ bản II. Các dạng toán cơ bản + Dạng 1. Phương trình và bất phương trình chứa dấu căn thức cơ bản + Dạng 2. Quy phương trình chứa căn về hệ phương trình không chứa dấu căn thức: Bằng cách đặt ẩn phụ, ta đưa phương trình chứa căn về hệ phương trình không chứa căn thức. + Dạng 3. Sử dụng phương trình tương đương hoặc hệ quả để giải phương trình chứa dấu căn thức [ads] + Dạng 4. Hệ phương trình chứa dấu căn thức + Dạng 5. Sử dụng phương pháp chiều biến thiên của hàm số để giải phương trình và bất phương trình chứa dấu căn thức. + Dạng 6. Phương pháp đánh giá hai vế để giải phương trình và bất phương trình chứa dấu căn thức. + Dạng 7. Phương trình và bất phương trình chứa căn thức có tham số III. Bài tập củng cố căn thức
Giải hệ phương trình bằng phương pháp hàm số - Huỳnh Chí Hào
Tài liệu gồm 14 trang hướng dẫn giải hệ phương trình bằng phương pháp hàm số, tài liệu được biên soạn bởi thầy Huỳnh Chí Hào. Các bước giải hệ phương trình bằng phương pháp hàm số: Bước 1: Tìm điều kiện cho các biến x, y của hệ phương trình (nếu có). Bước 2: Tìm một hệ thức liên hệ đơn giản của x và y bằng phương pháp hàm số. + Biến đổi một phương trình của hệ về dạng f(u) = f(v) (u, v là các biểu thức chứa x,y). + Xét hàm đặc trưng f(t), chứng minh f(t) đơn điệu, suy ra: u = v (đây là hệ thức đơn giản chứa x, y). Bước 3: Thay hệ thức đơn giản tìm được vào phương trình còn lại của hệ để được phương trình 1 ẩn. Bước 4: Giải phương trình 1 ẩn (cần ôn tập tốt các phương pháp giải phương trình 1 ẩn). [ads]